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FUREWORD

j 1. Purpose. To ald AWS personnel in constructing trajectories for constant.-
praasure~balloon flighta,

!
l! 2. Sgopg s
f a, Ssveral current methods for obtaining the trajectories from the usual

. upper-level, conatant-pressure contour charts or flow charts are described. Also in-
! cluded 18 a rew, sc-called "AWS Metbod" developed by lr, Kaxrl R. Johannessen in this
' headquarters. The merits of the various methods are presented with directions for
| selecting the method most suitable for a given problem.

’ b, Since the trajectory problem ia intimately connected with analysis ard
forecasting of the upper-level contour field or flow field, comment is made on the
special requirements imposed on the analysis and forecasting of these fields when
they are to be used for obtaining trajectories.

c. The Manual is divided in‘o two primary sections: 1) operational, and
2) theoretical. Although they are complementary with frequent cross references, the
operational portion is written to stand alone for procedural use., The theoretical
portion has been added only for those who desire a more complete umderstanding of the
entire trajectory prohlem,

d. Although vechniques similar to _those used for determining constant~pres-
sure trajectories are used also in solving problems of atmospheric diffusion and
dispersion, this Manual does not include atmospheric dispersion of particulste matter
within its scope. The manner in which methods described in this Manual may be applied
to dispersion problems is outlined in AWS TR 105-62 [13].

3. Supply of Manuals. This Manual is stocked at Headquarters MATS, Command
Adjutant, Publishing Division. Additional copies may be requisitioned from Headquat-
ters Alr Weather Service, ATIN: AWSAD, in accordance with AWSR 5-3, as amended.
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Section I

OPERATIONAL ASPECTS OF CONSTANT-PRESSURE TRAJECTORIES

1.1. Introduction and Definitlons.

The trajectory of any oblect 1s the locus of the successlive posi-
tions 1t occuples in space. If we further place marks along this geo-
metric curve and denote the times when the object coincides with these
marks, the trajectory completely describes the motion of the object.
Specifically, when the object is a parcel of the atmosphere, we speak
about an air trajectory. Since the alr generally moves vertically as
well as horizontally, an alr trajectory is a three~dimensional curve.

By a constant-pressure-surface trajectory or In short a constant-

pressure trajectory, 1s meant the trajectory of an object that at all

times stays in a constant-pressure surface and moves with the wind in
this surface. Such a trajectory 1s approximated by a balloon that 1is
controlled to float at a constant pressure, l.e., a constant-pressure

balloon.

This Manual is mainly concerned with constant-pressure-surface tra-
jectories.

A constant-pressure trajectory will usually not coincide with the
alr trajectory origilnating from the same polnt 1n time and space. Only
when the flow 1is isobaric (i.e., the air does not ascend or descend
through the pressure surface in question) will this be the case.

Also, the horizontal projection of the air trajectory through a
point 1s usually different from the constant-pressure trajectory
through the same point. The difference between the two types of tra-
jectories is well illustrated by an interesting study by Wexler [31].
Wexler attempted to trace the smoke pall that occurred in September 1950
over locations 1n the eastern United States back to the forest fires in
Canada that origlnated the smoke. Constant-pressure trajectories at
varlious pressure levels falled to lead back to the correct origin. The
air and the smoke with 1t followed air trajectories which, because of
the vertical displacement of the alr, had horizontal projections con-
siderably different from any of the constant-pressure trajectories.

Only when the trajectory was computed on isentropic surfaces did it
lead back to the correct origin.
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~ toriles was done by Shaw and Lempfert [27] who studied trajectories of
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In routine forecasting meteorologlsts are only indirectly con-
cerned with the question, "Where does the air come from?" or, "Where
does the air go to?" Since we are used to studying flow patterns at
synoptic hours, our forecasting experience and forecasting rules have
come to be based on the succession of these synoptic charts. In other
words, we think in terms of change of flow patterns rather than in

~ terms of change of position of the air parcels composing the flow.

'Hence, construction'of trajectories requlres speclial technliques, '
The first large-scale attempt at computing atmospheric trajec-

the surface currents over England and northwest'France. In the United
States, Meisinger [21] was a ploneer, He made several "constant'-
altitude balloon flights from 5000 to 10,000 feet and compared the tra-

Jectories with the sea-level ("surface") pressure chart (the only chart

avallable at that time). In one flight from'Forf Omaha to Arkansas, he
found that the actual average speed of the balloon (5000 feet) and the

-average speed computed from the gradient wind, coincidentally, agreed

within 1 knot. .
‘ Interest in constant-level balloons was revived during and after
World War II, when their‘potentialities for meteorological research
again became apparent. | |

Y
S

1.2, Constant-Pressure Balloons.

The balloons currently in use ascend at a rate of T00-1000 feet
per minute, and can be control.ed to float at a predetermined pressure.
Balloons have been flown in the past at a wide variety of pressures,
mostly ranging from 300 mb to 50 mb, or even higher.

When the balloon approaches the intended floatling pressure, gas ls
let out to decrease buoyancyiand stop the ascending motion., If the
balloon for some reason should start sinking below this pressure level, -
ballast 1s expehded to increase the buoyancy. The flows of gas and
ballast are controlled barometrically. To keep the expenditure of gas
and ballast a2t a minimum and to keep the oscillations about the stable
pressure valve small, the baroswitch flow-controls are qulte complex
devices to provide some kind of damping on the oscillations.

Disturbances that may upset the equilibrium after 1t 1s once es-
tablished, may stem from varlious sources: vertical currents, diffusion .
of gas through the balloon, changes of temperature of the ambient air, ;}ﬁ



i

=

)

RERE A S

S e e e

o

e
R4

i
°
i
Ea
S
©
J
£
&
it
&
I

Ry

¥

K4

September 1956 AWSM 105-47

changes in temperature of the gas in the balloon due to change in the
insolation and long-wave radlation. The changes in insolation are par-
ticularly large at sunrise and sunset and would cause large changes in
the altitude of the balloon if not compensated for by release of gas or
ballast. Hence, expenditure of gas and ballast is greatest at sunset
and sunrise and largely determines the practical limit of the flight
duration of present constant-pressure balloon systems.

The duration may be several days. Balloons released from points
in the western and mid-western United States have been recovered from
as far as Norway and Algeria after about 3 daysvflight, During World
War II the Japanese released their "balloon bombs" from Japan. About
10% of these were found on the West Coast of the North American Conti-
nent and many more probably reached land without being discovered.
This represents a distance of 5000 miles or more.

The balloons are usually able to stay within 10-15 mb of the in-

tended floating pressure. _
The balloons may carry a radio transmitter and a power aupply for

, tracking‘purposes‘end for sending other pertinent information such ag

pressure altitude, ballast expenditure, evte. A parachute may be at=
tached to recover instruments after rlight termination.

Constant-pressure ballone are valuable tools in meteorological re~
search., They provide measurements of winds and acoelerations, to an
accuracy not obtained before. Indirectly, they can provide estimates
of derived quantities such as pressure gradients, vertical motions,

eddy spectra, etc.
It has been suggested that conatant-pressure balloons released at

”regular intervals from favorable sites be used to supply upper-air data

for routine synoptic charts (Navy ﬁransosondes).

1.3. Weather Requirements for Balloon Launching.

Strong surface winds and precipitation adversely affect the
launching of the balloons.

Launching in winds of more than 25 knots is usually not attempted
with present launching techniques. The wind Gilrection also has to be
considered locally with regards to clearing ground obstructions.

Rain or snow increases the load on the balloon and upsets the
planned ascent rates or even prevents it from rising.

Launching 1n strong convective storms must be avolded for obvious
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reasons (turbulence, icing, and precipitation of rain, snow, or hail).
Similarly, the balloon must not rise through cloud layers that
contain supercooled droplats. Even light icing is likely to terminate

-

the flight.
P 1.4, Kinematic and Dynamic Methods.
¢ i A constant-pressure balloon will 4rift with the air that surrounds
§' § it at any time. Hence, if the wind in the pressure surface is known at T

% ' all points and at all times during the flight, the trajectory can be
i : constructed as follows: starting at the initial point and time, move
g.'; the balloon with the wind for a short time lnterval, determine the wind
g at the new position and time, and then move it on for another time in-
terval with this new wind, etc, Methods of constructing the trajectory
in this manner from knowledge of the wind field are called kinematic
methods. ‘
, In practice the wind field is analyzed or prognosticated only at
‘ certain synoptic times, usually 12 or_24 hours apart, and the kinematic
‘methods to be used in practice must'be_based on thése'synoptic charts.
 Some assumption as to how the flow on Chart h gets transformed into the = ™}
flow on Chart h + 12 hours or h + 24 hours has to be made. It 1s main- '
1y as to how this transformation occurs that the various kinematic
methods differ. For instance, the Central Tendency Method assumes that
- the flow remains stationary for a period from 6 hours before to 6 hours
after map time and that the transition to the flow of the next chart
occurs discontinuously. Another example: the Linear Interpolation
Method assumes that the wind at a point changes linearly with time in

the period between two charts.
The kinematic methods that are described in:'Section I of this Man- -

ual are: 1) Petterssen's Method, 2) the Central Tendency Method,

3) Consecutive Streamline Methods, 4) the Linear Interpolation Method,

: 5) the Relative Trajectory Method, and 6) General Mill's Method.

% These methods all have their particular advantages and it cannot
be stated that any one of them is superior to the others under all con-
ditions. This fairly complete list of standard kinematic methods has,
therefore, been included in the Manusl. The selection of the optimum
method under certain conditions depends on many factors. Among these
factors are: accuracy of the chart representation of the flow, length
of period between synoptic charts, the flow patterns themselves and @
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their behavior, the time avallable for trajectory construction, and the
desired accuracy of the trajectory. (See 1.15 for choice of method. )
There 1s another avenue open for constructing constant-pressure
trajectories. This is the dynamic approach. The horizontal motion
(acceleration) of an ailr parcel is determined by the magnitude and di-
rection of the horizontal pressure force acting on it and by the Corlo-
lis force. In addition, the vertical moticn of the air through the
pressure surface turns up a8 an influencing term when we pass from con-
sidering the horizontal motion of an alr parcel to considering the
horizontal motion of a constant-pressure balloon. This vertical motion
influence has to be neglected since we as yet have no means of charting

‘the vertical motions; furthermore, it can be neglected with a fair

approximation. The magnitude of the errors which may result from this
1s discussed in paragraph 2.1.2.

The Coriolis force depends on the instantaneous velocity of the
air and latitude. The pressure force can be measured from contour
charts. Hence, if the initial position and velocity of the balloon is
known,.the'future path and velocity can be determined from the contour
gradient through which it moves. -

The only two practical dynamic methods which have been proposed to
date are the Franceschini-Freeman Method and the AWS Method described in
sub-sections 1.12 and 1.13, respectively. Dynamlc methods in general
are discussed in sub-sections 2.1.1 through 2.1.9.

1.5, Special Requirements Imposed on Analysis and Forecasting.

When analytical and prognostic charts are being prepared for use
in trajectory computations, they must be prepared with this special
purpose in mind., Errors of analysis and prognostication will affect
the trajectory forecast differently than they will affect, for instance,
the forecast winds for an aircraft flight. When forecasting for an
alrcraft flight, the main concern is to make the mean vector error of
the forecast along the track as small as possible. In light winds the
wind direction may well be 180 degrees off without materially affecting
the planned flight. This is not the case for air trajectories. If the
balloon flcats in an area of light winds and the computed direction 1is
wrong by a large amount, the balloon will gradually drift off in a
direction opposite to the one expected and may get into a stronger air
current of a direction entirely different from that of the forecast
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trajectory.
This example illustrates the need for all posgible care to get an

accurate analysis and prognosis of the wind field (when kinematic meth-
0ods are used) or of the contour field (when dynamic methods are used)
at each indlividual point in the general region of the expected trajec-

tory.
1.5.1. Kinematic Methods. When kinematic construction methods are

used, the primary concern 18 to obtain a correct representation of the
wind field. To get a correct contour field is only a secondary object.

- The contour field is important only insofar as it may serve to give:

estimates of the wind field through:approximations such as the geostro-
phie wind, gradient wind, or other wind-contour relationships. Such
estimates are necessary wherever the wind observations alone are not
dense enough to define the wind field. Omly over limited regions of"
the chart are the wind observations dense enough to permit a direct wind

analysis; and even in these regions, height values have to supplement '

the analysis at levels above 200 mb where wind observations become
sparse.

In ordinary analysis work both winds and pressure heights are used
in a complementary way to draw the topography of constant—pressure sur—
faces. Increasing reliance is placed on wind reports and less on
height reports with higher levels, slnce the errors in the pressure
helghts increase about linearly with helght. In addition to contour
analysis, isotachs are often entered on the charts to give a better .
definition of the wind-speed field when the data warrants such a speci-
fic definition.

Over a falrly dense network as in the United States and Western
Europe, 1sotach analysis should definitely be added to the analysis to
help define the wind fleld as well as possible, " On prognostic maps the
contours may be used as streamlines since in prognoses it 1s usually
not possible te distinguish between the dlrectlions of streamlines and
contours. Streamlines should be drawn for the purpose of hindcasting
trajectories, preferably by the Sandstrﬁm technique.

To permit an accurate streamline and isotach analysis the winds
must be plotted with a protractor and the direction and speed entered
in numbers. This is a requlrement for trajectory work in sparse-data

regions also.
The isotachs should also be carried on the prognostic charts for

A
o——
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up to 24 hours. Beyond 24 hours it is doubtful if anything be achieved
by carrying isotachs on the prognostic charts.

In a somewhat less-dense data region, e.g., the North Atlantic
Ocean, isotachs may also be entered on the constant-pressure analysis
from 300 to 150 mb. Since wind reports at thcse levels are far apart,
the ahalyst has to rely on his experience of assoclating the isotach
patterns with the lower, better documented levels. Above 150 mb the
speeds again decrease so that they can be represented with the?accuracy
of which we. are capable by means of contours. _

In regions of limited data coverage the flow analysis hinges on

'height reports to a large extent. The question here arises as to what

relationship between height field and wind field should be used.
Hughes et al [16] 1nvestisated empirically various methods for com~

.  :puting upper-level winds from constant. pressure charts.‘

The authors recommend that Lambert conformal projections be used
in such computations since the curvature of a line on the map will then
closely approximate the geodesic curvature of the line on the earth.
Using for instance a polar stereographic projection the difference be-
tween the real and the measured curvature can. theoretically result in
errors of 20-25% in the computed wind in the jJet region. :

The authors found that the gradient speed 18 a better approxima
tlon to the observed speed than the geostrophlic speed in areas of
cycionic curvature of the contours; in anticlyelonic curvature the gra-
dient speed is not an improvement on the. geostrcphic speed in fact,
the geostrophic speed was somewhat better,

It was further attempted to reduce the differences'between‘com-
puted and observed wind speed by taking into account the speed of the
pressure system. The results of this attempt, however, were inconclu-
sive, Hence, until it has been shown that a slgnhificant improvement on
the simple gradient wind computation is effected by correcting for the
speed of the pressure system, 1t 1s recommended that the straight gra-
dient wind be used in gyclonic curvature of the contours.

In antlcyclonic curvature of the contours the geostrophlic wind
should be used 1f it is less than 40 knots. If the speed is greater
than 40 knots, add 20% to i1t. This 1s entirely an empirical correction,
but by applying it to their sample the authors found that the accuracy
of the computations in the anticyclonlc cases became comparable to that
of the cyclonic cases. The errors were less than 10% of the observed
wind speed one-third of the time and less than 30% two~-thirds of the

time.

7
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Several authors have attempted to find a more accurate wind-contour
relationship than the gradlent wind, 1lncluding factors such as speed of
the pressure system, spreading or tightening of contours, confluence or
diffluence of contours, ete. Perkins' [24] Central Wind Solution is
from a theoretlcal point of view probably the most satisfactory formula
that has been proposed. It appears, however, that the diff’culties in-
volved in measuring the quantities involved from upper alr maps afe 80
great that only the crudest effects such as that of the cyclostrophic
correction are worth including in practical computations. This was the
con¢lusion arrived at by Gustafson [14] in a study on wind-contour
relationships. . v ’ ' '_' .

- To sum up: In cyeclonic curvature of the contours the gradlent wind

should be used. In anticyclonic curvature the geostrophic speed should

be used when it is less than 40 knots. When it is more than 40 knots,
add 20% to the speed. | - o
- For computation of the gradient wind see AWS Manual 105-32. Gra-

_dient.wind scales for varlous projections and map scales have been

issued as AWS Form 32 (A-F). They are to be used with the tables in

AWS Manual 105-32.

1.5.2. Dynamic Methods. When trajectories are to be constructed by
dynamlic methods, for 1hatance by the Air Weather Service Method, the
analysis (or prognosis) should aim at an accurate representation of the
contour field. Wind and height reports both have to be used in a com-
piemehtary way in the analysis, parﬁicularly at high levels where the
height reports become unreliable., The primary object 18 now the con-
tour field; the wind field 18 a secondary obJject and it serves to help
determine the contour field. In this determination the wind-contour
relationships recommended in the previous parégraph are used in reverse.
In cyclonic flow, space the contours so that the observed wind becomes
the gradient wind determined from the contour spacing and curvature.

In anticyclonic flow, space and contours geostrophically if the ob-
served wind is léss than 40 knots. If the observed wind is more than
40 knots, reduce it by 20% and space the contours to agree geostrophi-
cally with this reduced speed. (The reduction should be 1/6 or about
17% to get full consistency with sub-section 1.5.1, but the difference
between 17 and 20% is here immaterial.)

1.6. Petterssen's Method.

oy
-
"> it
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Petterssen [25] (see footnote to sub-section 2.2.2) has suggested a
procedure of successive approximations whereby we can construct the
trajectory during a perliod T from flow charts at t =0 and t = T,

The method 1s based on the assumption that the particle has a con-
stant vector acceleration during the perlod. In this respect Petters-
sen's method differs from the other kinematic methods described below;
these are essentially based on some simple assumption of how the flow

field at time t = 0 is transformed into the flow fleld at ¢time t = T.

For a further discussion of Petterssen's method see sub-section 2.2.2,
In Figure 1, P, 1s the initial polnt at time t = 0. We measure

‘the velocity at this point on Chart O and denote this velocity by

v(0, 0) which 1is the velocity at point O and time O. This velocity
times the period to the next chart, Chart T, is T v(0, 0). This vector
1s set off from Po equal to f_K = ro. Next, we measure the velocity at
point A on Chart T, v(r ) T) which 18 the velocity at point r at time
T and set off a vector F_B = T v(ro, 7). The midpoint of AB is P,
and represents the firat approximation to the trajectory terminal If
the veloclty at P] on Chart T 1s equal to the veloclty v(r , T) within

" the chart accuracy, the computation can stop here, and Pl is the desired

terminal. If not, the velocity at Pl on Chart T, v(r , T), multiplied
by T, is set off as a vector, F;Bl = v(r 7). The midpoint of AB,
is P2 and is the second approximation. The velocity at P2 is compared
with the velocity at Pl, bvoth on Chart T. If this time the velocltles

agree within the chart accuracy, P2 1is the desired terminal; if not,

' the process can be continued and the points Pl’ P2, ees Will usually

converge upon a point P so that the velocitles at P and Pn—l finally
become identical when "n” 1s chosen sufficiently large. Usually the
second approximation P2 will come so close to P1 that we cannot deter-
mine any difference in the velocities at the two points on Chart T. and
P, will be the terminal of the trajectory.

Once the terminal of the trajectory is located, the trajectory can
be drawn in by making it tangential to the velocity at Po on Chart O,
and tangentlal to the velocity at the terminal on Chart T.

2

1,7. The Central Tendency Method.

In this method it 1s assumed that the instantaneous flow depicted
by a synoptic flow chart is valid for a perlod of 12 hours, i.e., from
6 hours before until 6 hours after map time,
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f Pigure 1.* Petterssen's Method of Successive

Co Approximations. Object starts at P, at time = O.

T 18 the period between two consecutive synoptic.

- >
charts. fg’ r » P +e.. Bre position vectors

from P . v(0, 0) is the wind at point O (Po) on
Chart O, 3(?1, T) is the wind at ;l on Chart T,
ete. Pl and P2 are the first and second approxima-

tions of the trajectory terminal at time = T,

-y

Double~lined (beld-faced) letters are used in the tigures to designate vectors,

*NOTE s
€y ¥ in the text is the same as ¥ in the figures.
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The flow chart may be a contour chart, an isotach and streamline
cnart, or a combination of the two methods of flow representation where
the contours are taken as streamlines and isotachs are added to give a
better definition of the speed fleld.

Figure 2 shows a trajectory constructed for a period of 24 hours
by the Central Tendency Method. The balloon, supposed to float at
300 mb, starts out at point A at 21Z, 11 February 1953. The 300-mb
chart for 03Z, 12 February gives the trajectory from A to B. In this
onstruction the contours were taken as streamlines, and the speeds

were estimated from the contours by applying the curvature correction

as outlined in sub-section 1.5. The subsequent chart at 15Z gilves the
trajectory from B to C. Kinks in the trajectory where the maps join,

as at B, will usually occur when the flow patterns have moving waves,

The kinks should be smoothed out as indicated by the dashed line.

CONTOURS, 300 M3
(100'S OF FEET)
TRAJECTORY

Figure 2. The Central Tendency Method.

The Central Tendency Method is probably the most commonly used
method. It 1s rapid and gives an over-all accuracy that compares

favorably with other methods,
The flow fleld to be used with the Central Tendency Method for

11
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forecasting or hindcasting individual trajectories should, of course,
be the best one available. In this respect the considerations in sub-
section 1.5 apply. The method will for obvious reasons work best when
the flow patterns are failrly stationary. When rapidly moving closed
circulations, troughs, or ridges occur near the trajectory, the method
may give seriously erroneous trajectories. This diffliculty cean be
overcome by Interpolating intermediate maps of the area where the tra-
Jectory encounters such flow patterns. One interpolation between the
12-hourly maps‘(each map valid for 6 hours) will reduce this error con-
siderably. ‘

For climatologlcal studies on traJectories the Central Tendency
‘Method used with the geostrophic flow will give sufficiently accurate
answers, For most climatological estimates the Central Tendency Method -
may be extended to 24 hours and thus reduce somewhat the time required

- for the study.

1.8. Consecutive Streamline Methods ,

‘These methods, as the name implies, utilize streamlines. on consec-
utive charts. There are several variants of them. Two of them which
were described by Macata (18] are illustrated below.

In Figure 3a,P 18 the initial point on the traJectory at time h,
the map time. Follow the streamline through P on Map h for 12 hours.
The speed willl usually be varlable so 1t 1s advisable to proceed in
3-hourly steps by means of a displacement scale, If the speed is glven
by contours, the Geostrophic Displacement Scale described in sub-section
1.10 may be used. If the speed field 1s determined by isotachs, the
special 3-hourly displacement scale for various speeds should be used.
(It is recommended that this be entered on the Geostrophie Displacement
Scale.) We thus arrive at point Ql‘ Similarly, we follow the stream-~
line through Po on the following chart, Chart h + 12, and arrive at
point Q2. The midpoint P of Q,lQ2 is the terminal of the trajectory.
The trajectory is drawn by starting out from P° tangential to the
streamline at P° on the Chart h and ending up tangential to the streanm-
line through P on Chart h + 12, The process is continued for as long
as desired. In Figure 3b another variant is illustrated. Q1 is ob-
tained as in Figure 3a. The streamline through Ql on Map h + 12 1s
then followed backwards for a distance of 12 hours to arrive at point
B. Vector BY, is next set off from P  equal to F d,'. Midpoint P' of 2

12
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STREAMLINES ON MAP h 'Y
- =~ ——= ~— STREAMLINES ON MAP h+I2
TRAJECTORIES

Figure 3. Consecutive Streamline Methods

8. Foreward tracking
b. Backward tracking
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QlQa' 1s the terminal of the trajectory. The trajectory is drawn as in
Flgure 3a.

A third method is described in AWS Technical Report 105-62, June
1950, The various consecutive streamline methods will usually give
8lightly different results, but from principle there are no reasons to
prefer one to another. ’

1.9, The Linear Interpolation Method .

This method is based on the assumption that the wind at a point
changes linearly with time. '
The trajectory 18 constructed in 3-hour steps, as illustrated in

Figure 4, The construction 1s explained in the legend

For the theory of this construction, see sub- section 2.2, 4 he
proportionate parts to be used for intervals other than 3 hours can be

~ found from a formula in that sub-section.

. 1.10. The Relative Trejectory_Method.

If the flow pattern maintains its shape and Intensity but moves
across the map, trajectories can be obtained by the Relative Trajectory
Method.

The method is based on the fact that if we observe the flow from a
coordinate system that follows the motion of the pattern, the flow will

., appear non-changing with time, and the relative trajectories (i.e.,

paths of air parcels described in this system) and relative streamlines
(1.e., streamlines in this system) will coincide. The relative veloc-
1ty which would be measured is vV - ¢. Here, Vv is the motion relative
to the earth and is, of course, the one plotted and analyzed on the
map; 3 18 the velocity of the pattern.

If the v field is represented by contours, the relative velocity
field, v - 3, is found by adding a flctitious contour fleld represent-
ing -3 to the basic contour field. The -¢ contour field consists of a
set of straight and parallel lines whose equidistance and labeling is
determined such that the fleld represents a geostrophic wind equal to

<>
-c.

Next, the motion of the balloon 1s followed in this relative-con-
tour fleld by proceeding from the inltlal point parallel to the rela-
tive caontours with a speed which is determined by a geostrophic wind
scale from the distance between adjacent relative contours, In this

14
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Figure 4. Construction by the Llnear Interpolation Method of the Tra-
Jectory from Po to P During a 12-hour Period. The period is divided
into four 3-hour periods. The vectors (set off from P ), Ty re, ?3,
and §4’ indicate the»posltions of the balloon after 3, &, 9, and 12
hours. The vectors Ty 3, and ru have not been entered in the Figure,
but the symbols ?2, ?3, and ru are entered at the position of the head
of these vectors. 3(0, 0) indicates the wind at Po on Chart O,

v(0, 12) is the wind at P, on Chart 12 (12 hours after Chart 0),

3(?1, 0) is the wind at point 11, on Chart O, etc. 3v(0, O) is the
3-hour wind travel with the wind 7(0, 0) set off as a vector on the
chart, etc. First, the vectors 3v(0, 0) and 3v(0, 12) are set off
from Po, the st.rting point of the trajectory. The end points of these
vectors are connected with a straight line. This line is dissected in
the ratio 1/8 to 7/8, thus locating the end point of vector ;l as in-
dicated in the Figure. Next, the velocity at this point 1s measured on
Chart O and on Chart 12, and the 3-hour wind travel with these veloci-
ties are set off as vectors. These vectors are 33(?1, 0) and 33(?1, 12)
respectively. The connecting line between the end points of these
vectors are dissected in the ratio 3/8 to 5/8, thus locating the end
point of ;2. The winds at this point on Charts O and 12 are measured,
the 3-hour wind travels set off, and the procedure is repeated.

The ratio 1s this time 5/8 to 3/8, and the last time the ratio is 7/8
to 1/8, computed from the end point of the wind travel on Chart O.
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manner we can determlne the relative position of the balloon at any
time we dealire.

The position relative to the earth, or the chart position, is found
by adding the displacement of the system during the elapsed time to the
relative dlsplacement.

The construction 1is illustrated by some examples. In Figure 5
the velocity fileld, 3, has concentric circular streamlines (contours)
and the speed'ié constant, determined by the geostrophic spacing be-
tween the contdurs, Thls rotating field moves from left to right

- -across the map with_a velocity 2. This translational speed 18 here
- .chosen equal to the wind speed, but that 1s not,easential. The contour
"fleld giVen by the dashed lines reppesents -3. By graphically adding -

'the~twovqohtour fieldsvthe_relative.velocity-field,“? - 3,3is‘obta1ned.

'The chart trajectory of a particle starting out at point A and time

vmmm——— CONTOURS OF V
——————— CONTOURS OF-C
CONTOURS OF V¥-¢

g RELATIVE TRAJECTORY AND
== =o=== ={RELATWE POSITION OF PARTICLE
AT TIME Ts5

5 {CHART TRAJECTORY AND CHART
T==—0======= (POSITION AT TIME T=8

Figure 5. Trajectory by the Relatlve Tragectory Method. A circular
vortey. of uniform speed moves to the right with constant speed 8. The
relative tragectory and the chart trajectory, starting from a point A,

are indicate
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t = 0 1s computed. The double-dashed lilne 1s the relative tra]jectory
and the relative positions, marked O, 1', 2' ... , are computed 1n
steps at time t = 1, 2, ... by measuring the varying speed with a geo-
strophic wind scale from the relative contours. Next, the succession
of points which form the chart trajectory 1is obtained by setting off
vectors 3, 23, 33 ... from the points 1', 2', 3', ... . In Figure 5
this 1s shown for time = 5, In this manner we arrive at points 1, 2,
3 ... , and the line Joining them 1s the chart trajectory.

A second example resembles more the patterns on actual weather
maps. . In Figure 6 the contours represent a detall of a 300-mb map.

Let us assume that the best prognosis possible 1s a simple translation
of this contour fleld with a velocity ¢ indicated on the map. This
velocity e might have been obtained from comparison with an earllier map.

Two trajectories have been computed, one which starts from a point
in the center of the low (point A) at the time of the map (t = 0) and
one which starts from point B in the westerly flow north of the low.
The top diagram shows the construction of the relative flow fleld,

v - 3, and the computed chart trajectories. In the bottom diagram the
relative flow fleld 1s repeated, and the construction of the relative
trajectories and the chart trajectories 1s shown in detail.

In the bottom left-hand corner 1s a diagram of a Geostrophic Dis-
placement Scale which 1s convenient to use for trajectory computations.
The ordinate 3s the displacement per time unit. A convenient time unit
to use for high-level trajectories i1s t = 3 hours. The abscissa is the
contour spacing. By transferring the contour spacing from the chart to
the displacement scale by means of a palr of dividers, the 3-hour tra-
vel of the obJject 1s set in the dividers and in turn spaced off on the
map. In the diagram the isoline for only one latitude has been shown.
The 1isolines are all equilateral hyperbolas. The scale is analogous to
a geostrophic wind scale. Instead of showilng the speed as a number it
gives the 3~hour geostrophic travel as a distance. It is recommended
that the scale be constructed locally for the map projection and map
scale used.

The auxiliary contour fleld representing -c may be prepared per-
manently as a set of templates containing straight parallel lines with
the spacing varying from template to template. For a given system
motion ¢ and a gliven latitude the template giving the best spacing can
be selected. The spacing on the template may be ldentiried by a number
which 1is entered on the Geostropnic Displacement Scale. Enter the

-

17
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DISPLACEMENT PER TIME UNIT

e CONTOURS OF 300 MB CHART
s = — — CONTOURS OF-€

, CONTOURS OF ¥-¢
- ={RELAT!VE TRAJECTORY AND RELATIVE
POSITION OF PARTICLE AT TIME T=8
5 {CHART TRAJECTORY AND CHART POSITION
OF PARTICLE AT TIME T=8

@=50°

—

e

CONTOUR SPACING

Figure 6. Trajectories in the 300-mb
Surface Computed by the Relative Tra-
Jectory Method.

18
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numnbers along the abscissa such that — when we enter the Geostirophic
Displacement Scale with the 3-hour travel of the system as ordlnate, go
right to intersection wlth proper latitude, and down to intersection
with the abgcissa — the nearest number will select the correct template.
A set of 8 templates with spacings for 5, 10, 15, 20, 25, 30, 40, and
50 knots at 40°N will suffice.

The Geostrophic Displacement Scale should be standard equipment
for trajectory work. On 1t may 2130 be marked 3-hour travel for various
speeds to be used in conjunction with 1sotach charts. It will then be
useful for all kinematic methods.

1.11. General Mills' Standard Ob,jective Method.

This method may be considered as a version of the Relative Trajec-
tory Method. The assumptions underlying the two methods are the same:
The flow pattern does not change shape or intensity but 1s merely
translated with constant speed across the map.

Instead of getting a continuous trajectory, as by the Relative Tra-
jectory Method, this method constructs the trajectory in 6-hour steps,
the flow being assumed stationary during each 6-hour interval.

Figure 7 1llustrates the methced. The flow pattern,. given by the
streamlines and isotachs, moves toward the right. The 6-hour travel of
the pattern is indicated by the arrow above the pattern. The balloon
starts out at Ao at the time of the map. The balloon displacement dur-
ing the first 6 hours 1s the line segment, AoAl' found by going first
left from Ao a distance equal to the 3-hour travel of the pattern to a
point Bl and proceeding from there for 6 hours along the streamline
through B1 with a speed given by the 1isotachs to arrive at point Cl.
The line segment Blcl is then transferred parallel to itself to Ao and
set off as AoAl; Al is the position of the balloon after 6 hours. Next,
we go left from Al for 9 hours (or what is the same, left from Cl for
6 hours), construct the new line segment B2C2, transfer thils segment
back to Al, and arrive at A2 which 18 the location of the balloon after
12 hours. In this manner we can proceed for as long as we desire. The
construction, of course, will only be vallid for as long as the basic
assumptions hold, i.e., the pattern is permanent and moves with con-
stant speed. A variable speed of the pattern may be introduced in the
system by altering the 6-hour displacements to the ieft as we see fit.

Instead of transferring the line segments Blcl’ B2C2, etc. to the

. 19
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; : 6 HOUR MOTION CF
i THE FLOW PATTERN

o - +——n= BTREAMLINES
P — ~~ ~130TACHS
. . s TRAJECTORY

Lo _ ‘ Figure 7. A Trajectory Computed by the
General Mills' Standard Objective Method.

right, it is more convenient to construct the trajectory on a trans-
parent overlay and move the overlay in the opposite direction to the
motion of the system, (i.e., to the left in the case above) a 3-hour
displacement for the first G-hour trajectory interval and an additional
6-hour displacement to the left for each of the subsequent 6-hour in-
tervals,
When the patterns have strong streamline curvatures or strong wind
shears, it may be advisable to shorten the steps t¢e 3 hours. In fact,
the shorter the steps the more will the trajectory resemble the con-
tinuous trajectory obtained by the Relative Trajectory Method,
The advantage of the General Mills' Method over the Relative Tra-
Jectory Method is that it is independent of the manner in which the
flow 1s represented. It works equally well with a contour as with a Y
streamline and isotach representation. Construction of the relative -

20
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fiow field needed for the Relative Trajecctory Method is a tedious pro-
cedure when the flow 18 determined by streamllines and lsotachs. as the
relative flow fleld has To be analyred from vectors obtalned by adding
vectorially two vectors point by point. Only when the flow is given by
contours (stream functions to be exact) is the Relative Trajectory
Method more rapid and probably also more accurate than the General

- Mills' Method. I{ is emphaslzed here again thai when the Relative Tra-

Jectory Method 17 used, the contours should te drawn'to’flt the winds

_ (geostrophically) rather than the helght reports. This is the usual
.practicp anyway when analyzlng high-level contour charts, since the

height reports become increasingly more inaccurate as we proceed up-
ward in the atmosphere. (Sub-section 1.v).
The General Mills' Method and also the Relative Traaectory Method

,dre preferab]e to the Central ‘Tendency Method or the Consecutive

Streamlines Method when the trajectory passes near fast or moderately
fast-moving features of the flow that possess marked streamline curva-
ture or shear. e.g., highs, lows, ridges or troughs, and jet streams.

Very of'ten the»best estimate that can be made of the future behavior of

such systems 1s an extrapolatcod (on prognostic maps) or interpolated
(when hindcasting) trunslatlon of the pattern'without altering its _
Shape and Intensity. FPFor these casns the Relative Trajectory Method or
the General Mills' Method will give the best trajectories.

'1.12. The Franceschini-Freeman Method [9].

This is & dynamic method. Reqguired for the computation are the
initlal wind and position when the Lalloon reaches the intended float-
ing pressure, and contour charts of this pressure surface at l2-hour
intervals for as long as the trajectory is desired,

The Coriolis forcc, which 1s given by the balloon veloclty, and
the pressure force, which 1s obtained from the contour charts, will
each try to deflect the path of the balloon, the Corlolis force to the
right (in the Northern Hemisphere) and the pressure force toward lower
contours. The resulting motion of the balloon is computed in 2-hourly
steps by means of a "Displacement Nomogram." This Nomogram, shown in
Figure 8, is valid for all map scales and projections. The time inter-
val of 2 hoursg cannot be changed.

21
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NOMOGRAM FOR DISPLACEMENT COMPUTATIONS
(VALID FOR ANY MAP SCALE OR PROJECTION)

|

L)
|
VERTICAL SCALE

60°
s0°

MERSSSSNNNN N

°
10 9 8 7 e 858 4 3 2 ! 30

Figure 8. Nomogram for Computing the Displacement and Final Velocity
of an Air Parcel After a 2-hour Interval. (After Franceschini and
Freeman.) O 1s the origin. See text for instruction on use.
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a.
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Stepwise Procedure for Constructing the Trajectory.

First Time Interval.

(1)

(2)

(%)

(5)
(6)

Find the climb displacement as explalned in paragraph ¢
below and adjust this to the nearest multiple of 2

hours as explained in paragraph d below. The point ob-
tained 1s the adjusted initlal positlion.

Determine the initial velocilty 30 as explalned in e be-
low. Set off a vector 2 hours X Vo to scale on the
base map or on a transparent overlay from the adjusted
initial position.

Determine the average geostrophlc velocity $é over the
interval as explained in f below. Set off a vector 2
hours x‘ﬁé to scale from the, same origin as in (2)
above. Only the terminals of 250 and 23g need be in-
dicatead.

Place the Displacement Nomogram as follows: the origin
at the terminal of 230 and the Vertical Scale passing
through the terminal of 2¥ . The Nomogram now remains
fixed for steps (~) and (6).

Note the value of the terminal of 2¥_ on the Vertical
Scale. This is l2(§7o - GS)I on an arbitrary scale.
Enter with the value of (5) and the proper latitude (at
midpoint of 230) the Displacement Grid of the Nomogram.
The intersection of the 1solines locates a point. This
point is the terminal of the computed trajectory for
the first interval. Mark this point on the map or a
transparent overlay.

Second and Subsequent Intervals.

(1)

Determine a new initial velocity displacement for the
second interval by using the points from the first in-
terval as follows:

(a) Using the Vertical Scale measure the distance from
the point determined in step (6) above to terminal
of 238.

(b) Place the Nomogram as follows: the origin at ter-
minal of 230 and the Vertical Scale parallel to
the distance measured in step (a) above. In the
grid below the Base Scale locate the intersection

23
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of the proper latlitude line and the sloping iso-
pleth of the value in (a) above. Mark on the Base
Scale the projection of this intersectlon point on

3 : the Base Scale.

§ (c) The line from the iLnitial point of the preceding
i o time interval to thc polnt marked in (v) avove re~
L - presents the initial-velocity displacement for the
- second interval. Set off this vector from the ond
point of the first trajectory segment as in a(6).
(2) Determine the average geostrophic-velocity displacement
" for the second interval as explained in paragraph f be-

G TR L

R U R DI T

low. ‘Set off this vector from the same onlgin as in
- b(])(c) above, - :
y (3) The following steps are now identical to steps a(5) and
. a(6). ‘
, (4) For subsequent intervals proceed as for the second in-

~ terval using the points of the previous interval to

 compute a new initlal velocity displacement for the in-
terval., The trajectory terminals are marked on the o
base map with proper time indications as we go along. 37)

¢. Climb Displacement and Time at Altitude. The climb dilsplace-
ment can be computed when the time of release and the climb rate of the

RSN

balloon are known,
(1) We first compute the climb vector. It will be suffi-

¢ clently accurate to use the winds at 10,000-ft inter-
: vals., For example, if 32, 310, etc., denote winds at
oot 2000, 10,000 feet, etc., we have the following for the

climb vector to 300 mbs

> -3 o -> >
2.1 [Vz " V10 . V10 " V20 | V2o j,vzo]
? -3 2 ' 2 ‘ 2
| V, 4 2v Von + V
: 2,112 10 . Voo * 3o]
; -372 2 ' 2

(2) From this expression for the c¢limb wind, an easy con-
struction on AWS-WFC-10-4 follows. The construction is
illustrated vy the fo‘lowing example. ?2 = 320° 20

knots, V,4 = 300° 35, V,, = 270° 50, 330 = 250° 60
The points A, B, C, and D of Figure 9 represent v2

av 2v20, and V3O’ respectively, plotted on AWS-WPC-

-

10’

24

"i““*“*“‘\~‘\*\¥a‘;‘\‘\ﬁ\g\\i\;\;‘\ﬁ\\;\\ﬁ\\¥\¥“‘



SR PR P P I I VTR, e reas

September 1206

o«

AWSM 105-47

10-4, Midpoints of AB and CD are E and F and represent
% (32 + 2V o) and % (2320 + 330), respectively. Mid-
point of EF is @ and represents half the sum of these
vectors: the climb vector ¥ is 2/3 of oG,

Similar constructions can be found to 200 mb and other
surfaces. | '

Figure 9. Construction of the Climb
Vector to 300 mb on AWS-WFC-10-4,

The displacement of the balloon during climb is then T
when S 1s the climb rate in feet per minute, z the
pregssure altitude of floating pressure in feet, and ¥
in knots:

c

->

¥z
r, = 58 nautical miles

25
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(5) The time when the ballocn first reaches altitude is, of
course, releasce cime plus the climb time, z,S minutes.

d. Adjustment to Nearest 2-hourly Intervél. Since the :omputa-
tions are carried ocut in Z2-hourly steps, 1t 13 convenient to start from
the positlon of the bzlloon at a time which 'is a multiple of 2 nours,
i.e., 00%2, 022, 042, etc. If, for example, the balloon is computed to
be at altitude at 01302, move 1t on with the wind at altitude (see e
below) for another 30 minutes and obtain the position at 0200Z. This
15 the adjusted lnitlal position. '

e. The Initial Velozcity. It 1s important to determine the wind
accurately.

(1) 1If rawins from the release point taken a few hours
prior to rclease are available (up to 6 hours before),
these should be used.

) If no rawin observations are taken from the release

(

n

point or Iif these are more than 6 hours old, the initial

wind should be obtalned from an extrapolated streamline
and isotach analysis in the area of the release point.
If no winds or very few wind reports appear on this
analysis, winds have to be estimated from the contours.
The correction for curvature of the contours should
then be used in accordance with sub-section 1.5.

(3) 1If the trajectory forecast 1s not needed prior to re-
lease and the balloon is tracked for the first few
hours, the inltial wind may be obtalned from the first
part of the trajectory.

f. The Average Geostrophic Velocity for an Interval. This
should properly te the time-space average over the appropriate trajec-
tory segment; but slnce the trajectory is not known at the outset, use
as an approximation the average geostrophic wind over the initial vel-
ocity displacement, 250.

(1) The geostrophic wind field for intervals between the
map times O03Z and 19Z may be obtalned by a time-
linear interpolation between the two successive charts
bracketing the interval. The intervals may be numbered
as 1ndicated:

Zero Interval 02Z-042
lst " Q4Z-00Z
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O end Interval 062-08Z (determined from the
3rd " 082-10Z 032 and the following
4th " 102-12Z 15Z charts)
5th " 12Z-142

Zero " 14Z~16Z (determined from the
1st " 162~18Z 15Z and the following
ete. ‘ 03Z charts).

: _ The change of the geostrophic wind 1s siven by the

%{ 4 . " - l2-hour height-change chart, Since the gradients of

£ S ‘this chart vary less than the gradients of the contour

IR T - . -chart, it will generally be a good enough approximation

g ~to use a constant geostrophic wind-change over an inter-
vel., If we denote the 12-hour geostrophie wind-change,

» measured at the midpoint of av s by uvg, ‘the geostro-
phic wind-change for the interval will be zero for a
‘zero interval, 1/6 Avs for a 1st interval 2/6 Avs for
a 2nd interval, etc. This change vector 1s then added
vectorially to the average geostrophic wind over 230

R e SR S D = Z
R T e U S T 2R EEREETENS T A

(wf . measured from the basic contour chart. As an example,

‘é _ _ , : Figure 10 illustrates how to find the average geostro-
i ' phic wind for the interval 082-10Z (3rd 1nterva1),
: %M, .3 August.

% In the Figure the 1nit1al velocity displacement, 2v

% 1s set off to scale from the initial point A This is
% Kﬁ We measure the geostrophic wind at A, VS(A) = AC
& and at B, V = BF. Vg(B) 18 set off from C equal to
%‘ . At midpoint M of AB the 12-hour geostrophic wind

change Avg is measured from the height change contours.

The average geonstrophic wind change over iB during the
period from the basic chart at 03Z and the mid-time of
the interval, 09Z, 1is then 3/6 A3g. However, we want
the 2-hour displacement with the average geostrophic

velocity; therefore, set off 2 x 3/6 A$g from D, equal
to DE. AE is now the desired 2-hour displacement 23g
computed from the formula AE = 2 x LE (VS(A) + vg(B) +
3/6 AV ] This vector addition is best performed on

AWS~WPC 10-4 or a similar hodograph.
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294 —

//296

298

0 w———— CONTOURS AT 03Z 3 AUG.
== — == HEIGHT CHANGE CONTOURS
FROM 03Z TO (3Z 3 AUG.
(100'S OF FEET)

Figure 10. The Mean Geostrophic Displacement Velocity
for a 2-hour Interval,.

(2) An alternate method which requires less time is to use
a separate linear time interpolation for the direction
and the speed of .the geostrophic wind at point M.
- Example: Geostrophic Wind at point M at 03Z:
260° 40 knots
Geostrophic Wind at point M at 15Z:
290° 60 knots
Geostrophic Wind to be used for a 3rd interval (082Z-
10Z) will then be 275° 50 knots since the 3rd interval
is midway between 03Z and 152,

28
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1.13., The Air Weather Service Method.

1.13.1. Introduction. The AWS Method is a dynamic method. Needed
for construction of a trajectory are:
a, The initlial velocity
b. Contour charts at 12-hour intervals
¢. - The AWS Trajectory Graph
d, A transparent Polar Diagram (aimilar to AWS-WPC 10- 4)
The AWS Method and the Franoeschini Freeman Method,_both being dy-

_namic methods, have ‘several points in common, They both regquire an

initial velocity of the obJect at the beginning of the computation

period and the pressure distribution during the period. In the Francea

chini Freeman Method the’ computation period is 2 hours. In the AWS

Method, it is 12 hours or, occasionally, 6 hours. The advantage:of the

latter method is that it is quicker since the computation period is -
much longer; also,‘it is bélieved to be somewhat more accurate and less

‘tedious to apply since 1t avoids working with'small”displacement incre-
ments. ‘

A bdhic assumption underlying the AWS Method 15 that the geostro-
phic wind vector, which follows the object, changes linearly with time
during the computation period. The period is 12 hours in regions of '
the map where the space variations of the geostrophic wind are moderate
or small (about 9 knots or less per latitude degree of progression) and
6 houts where this variation is large such as it will be near marked
troughs or ridges surrounded by strong contour sradients. The trajec-
tory terminal is found by a procedure of successive approximations
reminiscent of that used by Petterssen (see sub-section 1.6). For the
theory of the AWS Method see sub-sections 2.1.7 and 2.1.8.

Sooner or later, the future will see trajectories traced by elec-
tronic computers. When it becomes possible to simulate the behavior of
upper-air prescure patterns (300 mb, 200 mb, etc.) through numerical
predlction, the programming of the computer for obtaining dynamic con-
stant-pressﬁre trajectories as a by-product is a relatively simple
matter.

1.13.2. The Polar Diagram. The Polar Diagram (Figure 11) is used as
an overlay on the AWS Trajectory Graph to compute the displacement dur-
ing the computation period and the obJject velocity at the end of the
computation period. These computatlions are made from the known geostro-
phic velocities at the beginning and at the end of the trajectory

29
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T 1 S
=2 DEGREES OF LATITUDE

i0 o 380

Figure 11. The Polar Diagram,

segment of this period. It is recommended that the Polar Diagram bhe
prepared locally on transparent material.

If a Lambert conformal projection is used for the contour maps,
the distance between consecutive concentric circles corresponding to a
10-knot speed increment should be made equal to 2 latitude degrees at
the standard latitude of the maps used. Thus, displacements and veloc-
ities can be treated interchangeably for a computation period of 12
hours since the displacement during a 12 hour period of an object mov-
ing at 10 knots is 2 latitude degrees. I the computation period is
reduced to 6 hours, the displacements are halved. This 1s possible be-
cause the scale of the Lambert conformal projection (true at 30°N and

30
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60°N) varies only insignificantlyv between 65°N and 25°N.

If a polar stereographic projection i1s used in chart work, veloci-
ties and distances can no longer be treated as equlvalents because the
length of a latitude degree varies by about 40% between 65°N and 25°N,
our main area of lnterest. The Polar Dliagram will, howevér,'still glve
true displacements in latitude degrees, 2 degrees for every 10 knots of
speed on the diagram for a 12-hour period and 1 degree for every 10
knots for a 6-hour period. The correct length of the displacement to

.be set-off on the map is then the length of the number of latitude de-

grees indicated by the speed, measured at the*mean.latitude'of the tra-
Jectory segment. When thg polar stereographic projection is used,-

there 1is no 1Qnger any specific advantage in constructing the Polar.
- Diagram by the formula: 2 latitude degrees = 10 knots, Any reasonable

distance between the circles can be used. Since the AWS-WPC;10e4 is
available, this may be used. ' ‘

1.13.3. The AWS Trajectory Graph. This graph (Figures 12a and b)
contains 2 diagrams. The_left one computes displaceménﬁs.during‘a 12~
hour (or 6-<hour) period, and the right one computes the velocity at the
end of the 12-hour (or 6-hour) period. This final veloecity becomes, of
course, the initial velocity for the next combntation»period.

The scale of the graph is arbitrary as only the configuration is

~of consequence. It may be reproduced on any scale. The scale repro-

duced in this Manual is too small for practical use with ordinary -
weather charts (scales equal to or larger than 1:20,000,000). A separ-
ate print of the Graph on a larger scale (large enough for scales up to

'1:10,000,000) is available for field use as a separate item (AWSM 105-

4T7A).

1.13.4. Choice of Computation Period. The computation period is
either 12 hours or 6 hours. Which period to use depends on the gpace
variation of the geostrophic wind on the contour map at the end of the
period. If this variation is less than about 9 knots per latitude de-
gree of progression (60 nautical miles in any direction) in the region
of the trajectory segment, use 12 hours. Otherwise, use 6 hours. In
the Trajectory Graph the continuous radial lines labelled for latitude
(unbracketed) are to be used for 12 hours; the dashed radial lines with
bracketed labelling of latitude are for & hours,

Incidentally, choice of too long of a computation period will
automatically be signalled by the failure of the computed trajectory

31
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i Figure 12a. The AWS Trajectory Graph — Displacement.

% Dashed radial lines and bracketed latitude values re-
fer to 6-hour trajectories. Solild radial lines and

| non-bracketed latitude values refer to l2-hour tra-

2 Jectories,

|

: terminals to converge upon a stable solution; 6 hours must then be used,

§ When a 6-hour computation period is used, a contour map intermed-
late between the 03Z and the 15Z maps must be sketched in the area of
the trajectory segment; i.e., 1f the beginning of the period is 15Z, an
intermedliate map valid at 21Z must be interpolated between the 15Z and
the following 03Z map.

1.13.5. Stepwise Procedure for Constructing the Trajectory. )

32
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Figure 12b. The AWS Trajectory Graph — Final Veloc-
1ty. (See legend in Figure 12a.)

a. First Computation Period.

(1) Find the climb displacement and the time at altitude as
explained in paragraph 1.12.1.c¢ and adjust to the near-
est 6-hourly upper-air synoptic hour (03Z, 092, 15Z,
and 212) kinematically., This is the adjusted initial
position. If the position 1s at 09Z or 21Z, the first
computation period is 6 hours to bring the computation
scheme in phase with the avallable maps at 032 and 15Z,
If it i8 at 032 or 15Z, the period is 12 hours or 6
hours, according to sub-section 1.13.4.

33
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£ (2) Determine the initial velocity v as outlined in para-

Lo graph 1.12.1.e and enter Vo as a point v, on the Pelar
: Diagram.

é (3) Determine the geostrophic velocity 30 at the adjusted

; initial position on the chart valid at this time, If

E : the adjusted initial position is at 03Z or 15Z, this 1is

5 done directly; 4f it is at 09Z or 212, it 18 interpolated
from the values on the two bracketing 0372 and 15Z maps.
4 . Enter §, as a point G on the Polar Diagram.

2 (4) Make an estimate of the end point of the trajectory for
é" ﬁ o the period in question and mark this point Z1 on the
o B : contour map valid at the end of the period. Henceforth,
I .+ this map will be referred to simply as "the contour map."
'. , | - This estimate may éonveniently be the énd;point of the
i - - ‘ C. T. M, trajectory (Central Tendency Method, see sub-
Ji, P o section 1. 7) Measure the geostrophi¢ velocity at Zi
- | and mark this velocity G, as a point G, on the Polar

R R
AR T R T A e oy et 117
=

=
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, § Diagram.
; ”% (5) Place the Polar Diagram on the 1eft diagram (marked Dis- .
-_? placement) of the AWS Trajectory Graph such that point *ﬂ)

: Ga coincides with the nderiying center (where the radi-
_ ,f al lines meet) and the point Ve falls on the vertical
L o axis (thick line with arrow). Read the value under v,
1 on the axls scale. Without moving the diagrams enter
r the grid (marked 36 —\30) to the right of the axis with
this value for the spirals and the appropriate latitude
for the radial lines and determine an intersection point.
Mark this as point A on the Polar Diagram and draw the
vector E;K. This vector remains on the Polar Dlagram
throughout the period. The latitude to be used i1s the
mean latitude of the initial point and Z,. (Bracketed
values of latitude are for 6-hour periods and unbrack-
eted values for 1l2-hour periods,)
(6) Rotate the Polar Diagram, with G, remaining on the cen-
ter, until Gl falls on the axis. Read the value under
Gl‘ With this value enter the spirals of the grid
(marked &, — U ) to the left of the axis and find the
intersection with the appropriate latitude line. Mark .
this point on the Polar Diagram. .

Ysonnd
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From the point determined under (6), set off the vector
G;K on the Polar Diagram. Only the end point ¢f the re-
sultant need be marked., Label this point 22.

If Lambert conformal maps are used and the Polar
Dlagram 1s constructed on the formula: 2 latitude de-
grees = 10 knots speed increment, proceed to (8) and
skip (8'). If not, skip (8) and proceed to (8').

With its center on the initial point and 180° pointing
north, place the Polar Diagram on the contour map. Mark
on the contour map the point under Z and also label
this point as Za. Z2 1s the second approximation to the
trajectory. . terminal for a 12-hour period. For a 6-hour

period the displacement is. half of this, and the correl-

ponding terminal on the contour map is labelled 22

With its center on the initial point and 180° pointing
north, place the Polar Diagram on the contour map. 22
obtained under (7) indicates the azimuth of the second
approximation to the trajectory terminal. The radial
distance to the terminal 1s set off with dividers as the
distance of the number of latltude degrees indlcated by
22’ measured on the contour chart at the appropriate
latitude, - Mark this terminal,z2 on the contour chart
also. (For example, if 22 is 273° 80 knots and the mean
latitude of the trajectory segment is 35°N, the dis-
placement is set off on the contour chart as 273° azi-
muth and %% X 2 = 16 degrees of latitude measured on the
map as the length of 16 latitude degrees at the latitude
of 3%°N., This is for a l2-hour period, For a 6-hour
period the displacement will be 273° azimuth and 8 de-
grees of latitude. A scale which allows setting off the
distance directly by entering the scale with the speed
of 22 and the appropriate latitude should be constructed
locally.)

Measure the geostrophlc velocity 3 at Z2 and mark 1t as
a point 02 on the Polar Diagram, If 3 and 3 agree
within the accuracy with whilch we can estimate geostro-
phic velocitles on our maps, the construction can stop
here, and Z, is the desired terminal. ¥or practical pur-

2
poses this accuracy may be taken as 5 knots or 10% of 32,
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whichever is highest. If 32 differns from 31 by more

L than this value, proceed to (10). '

(10) Proceed as under (6) and (7) with G, now replacing G, in
the Instructions, thereby determine Z.,, and set 1t off
on the contour map as done for Z, under (8) or (8!'), as
appropriate.

(11) Measure the geostrcphic velocity 3 at Z3 If 3 and a
agree wlthin the stated limits, Z3 is the desired ter-
minal and the computation can stop here. If not, pro-
ceed again as under (6) and (7), G3 now replacing G, in

, the instructions, and thereby determine Z,. Set Z, off

. | on the contour chart, 34 at 2, is measured, etc. The

S process is repeated until e point Z 1s reached on the

éﬁ"‘; o o contour chart such that the gqostrophic velocity 3 at

AR o ‘this point agrees with 3 .1 within the desired 11m1ts.

L . - Usually 2 or 3 approximationa will suffice.

The final veloclty at the end of the first period,
which will be the new initial velocity for the next | o
period, is now determined by using the points Vgs G . -
and G on the Polar Diagram as follows: : -

(12) Place the Polar Diagram on the right diagram (marked Ei-

‘ nal Velocity) of the AWS Trajectory Graph, such that G

‘”g ' o falls on the underlying center and v, falls on the hori-

' zontal axis (marked Ve -8 ) Proceed along the circle -
under Vs to intersection with the appropriate latitude
1ine (brackets for 6-hour intervels). Mark this inter-
section polint v, on the Polar Diagram.

(13) Rotate the Polar Diagram with G, remaining on the center .
until G, falls on the vertical axis (marked 3 - 5 ). '

| Proceed along the spiral under Gn to the intersection

‘ with the appropriate latitude line., Mark the intersec-

tion polnt as vV, on the Polar Diagram.
(12) Aad v, from (12) and v, from (13) vectorially on the Bo-
lar Diagram. The point arrived at represents the final
veloclty of the first perlod and the new initial velocl-
ty of the second period. Plot this velocity as an arrow
on the contour chart at Zn. This aids in drawlng the
trajectory, which 1s tangent to 1it. .‘k

TR TR D g el SR L A e
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‘b. Second and Subsequent Computation Periods. The determination
of the displacement and final velocity during the second period is quite
analogous to the procedure outlined under paragraph a, above, except for
(1), (2), and (3) which now do not apply. The new v has already been
found under (14), and the new G 18 d of the first period v, and G,
of the second period. are again marked as points on the Polar Diagram,
and the procedure from there on is as from sub-paragraphs a(l4) through
(14), above, The new 3v 3 ete., are determined from the contour
chart valid at the end of the second period at the points Zl’ 22’ ete.

For subsequent periods the process is again analogous to the second
period. The final velocity and 3 of the previous period are used each
time ‘as v and d for the present period, ‘and the’ velocities. 31, 32,

- _ete,, are read at the points Zl’,ZE’ etc., on the contour map valid at

the end of the present period. :
Finally, if desired the total trajectory may be traced (using a
light table) on a separate ohart by transferring the terminals and

~ velocities already entered on the individual contour charts. The tra—
. jectory is drawn tangent to the velooities at the terminals of each

period.

l 13.6. ~Limitations of Dznamic Methods. Theoretically, we may carry
on a dynamic trajectory for as long as contour charts are avallable
(analytic or prognostic). However, when the chain of constructions de-
pends on only one actual condition at the beginning of the first period
and since this condition is only approximately known, the longer the
ohain the more will the trajectory depart'from reality. This is par-
ticularly true 1n complex contour patterns, With large ageostrophlc
components (30 - 30) the trajectory takes the form of cycloids of large
amplitude which cut drastically across the contour patterms. This 18 a
sign'that departure from reality has been reached. An example of this
is Figure 15b of sub-section 1.14.2. .

When this ocecurs, it is a sign that errors have accumulated to the
polnt that the flow pattern indicated by the trajectory is out of phase
with the contour pattern to & degree that is not realized In nature.

In nature a mutual adjustment of pressure pattern and flow pattern
occurs continuously at the pressure level in question as well as at all
other levels. This adjustment 18 complex since all levels are linked
together hydrostatically. At present only our experience in comparing
the pressure and flow patterns on synoptic charts can tell us how far
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they can get out of phase with each other, It must, therefore, be left
to our experience to declde at which point in the chain the constructed
dynamic trajectory is no longer valid.

If we are using prognostic contours it may, of course, be the
contour charts which are in error. It has, in fact, been suggested
that the trajectory msy be used to teat whether or not the prognosis

'is dynamically correct,
If the trajectory 1is being hindcast and winds are avallable on the -

analytic contour charts, a new- initial velocity can be estimated from

. the wind field for each period. In this manner it is aecertained that

the dynamic trajectory will be reasonably in accord with the pressure

pattern.
. From the preceding remarks, the impression must not be gathered

that dynamic trajectories are erroneous when. they cut across contours
Actual trajectories do, in fact, cut appreclably across contours more

- often than not, partioularly in curved flow. Data gathered from actual
“balloon trajectories indicate that the geostrophic departures at 300 mb

are on the average of the order'of:30-40% of the wind speed (see sub-
-section 2.1.9). :

When forecasting a dynamic trajectory, it will usually not get un-
reasonably out of phase with the contour pattern until some time after
36-48 hours. Should unreasonable ageostrophic wind components arise,
it is best to relax the initial velocity toward the seostrophic wind
for example, by halving the seostrophic departure or by making the new
initial velocity entirely geostrophic.

In splte of these difficulties to which protracted dynamic tra-
Jectories are subject, it 1s felt that when the task is hindcasting
trajectories in regions where upper-wind reports are much more sparse
than helght reports, or when forecasting trajectories from prognostic
charts for up to 2 days, such methods as the Franceschini-Freeman
Method and the AWS Method have definite advantages over other methods.
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1,14, Accuracy of Constant Pressure Trajectories.

1.14.1. Statistics on Forecast and Hindcast Accuracies. Machta [18]
computed the trajectorles for eleven balloon flights at 200 mb, re-
leased from Ellswcrth AFB, South Dakota, and Holloman AFB, New Mexico,
during the period August 1949 to March 1950. The trajectorlies were
constructed by three different methods, l.e., the Consecutive Stream-
line Method (C.S.M.), the Central Tendency Method (C.T.M.), and the
Linear Interpolation Method (L.I.M.).

'In Table I the distance between the end points of the computed and
actual trajectory is listed as the error. The persenuage error 1s the
error as a percent of the actual distance travelled by the balloon.

TABLE I
Trajectory Hindcast Errors, 200 mb, llicases (aftervMachta)

Mean length of the trajectories: 865 naut. miles

Mean duration of the flights: 15% hours
Eyrror — naut. mi. Error — percent
Method used
Mean Range Mean Range
C. S. M. ) 196 39 - 660 28 y - 125
cC. T. M. 237 | 42 - 780 3% | 5 - 147
L. I. M. 225 | 65 -696 | 33 |7 -131
A1l 3 methods 219 39 - 780 32 4 - 147

According to this Table the Consecutive Streamline Method turned
out to glve slightly better results than the other two methods, bhut
Judging from the wide range of the errors and the small sample, this
small difference 1s not significant. The errors for an individual
flight computed by the various methods showed very small differences.

Machta [19] also tested various kinematic methods in mathematical-
1y defined flow patterns; the differences were found to be small, the
patterns chosen were such that they gave very small errcrs for the tra-
jectories, far smaller than those incurred in actual practice; hence,
we cannot safely draw any conclusions for the case of actual trajec-

tories,
Table I gives.a realistic plcture of the accuracy of trajectory

39

‘i"‘“



auem

AWSM 105-47 September 1956

hindcasts that can be attained with a network of observations similar
teo the one that existed over the United States at 200 mb in 1949-50,
Since then, wind coverage and accuracy has increased considerably.

The Air Weather Service Bulletin for November 1952, pp. 16-19 [2],
glves the result of an AWS trajectory forecast project. Purpose of the
project was to determine the accuracy with which trajectories could be
forecast. The duration of the forecasts is not stated. The level was
300 mb. The error summary, which is reproduced below, refers to the

"deviation of the forecast from the observed end point of the trajec-

tory expressed as a percentage of the radial distance from the launch-
ing site to the observed terminal position. The error is expressed as
an error along and at right angles to the trajectory." Table II below
summarizes the results. The 76 cases presumably.refer to several AWS
detachments forecasting for the same trajedtories.

' TABLE II

- Frequency of Trajectory-Forecast Errors
. Within Percentases Indicated

_ Case of Cases of .
Percent Error Across Error Along
Trajectory Trajectory
0 to 9.9 27 15
10 to 19.9 24 Coe 19 .
20 to 29.9 8 ' 17
30 to 39.9 b 10
4o to 49.9 6 8
50 to 9.9 3 L
60 to 69.9 1 L
gg to g9.9 1 1 ,
tc 89.9 2 1
90 to 99.9 0 0
Totals 76 76
Avg. % error 19.5 25.9

Assuming the distribution of component errors is such that we can

find the percentage absolute error as V (19. 5)2 + (25, 9) = 32,5%, we

may compare this value with the value of 32% from Machta's evaluation

of hindcasts. We note that there 1s surprisingly little difference be-

tween the accuracy of hindcast and forecast. _
The similarity of the average accuracies of hindcast and forecast .}
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trajectories has also been remarked upon by Moore et al [22]. Their
experience relates to 300-mb flights: "Attempts were made to forecast
the impact points of the balloons at the end of their flights. Mul-
tiple forecasters and procedures were used to minimize subjectivity.
Although 1t was found that better forecasts could be made in certain
selected flow patterns and that experience improved the forecasts, the
accuracy which could be obtalned was limited. Average errors in the
prediction of the impact point amounted to about 23% of the total range
under all weather situations for which balloons were flown. Under con-
ditions selected by the forecaster as optimum, this error could ndt be
reduced below 18% of the dlstance travelled.

"It was recognized that operational degradation would reduce the

_effectivenese of the forecasts whenever the time of launching, rate of

rise, floating altitude, or flight duration were different from those
assumed by the forecaster. In addition, errors in the pasic forecast
of the pressure and wind flelds to be encountered during flisht would
affect the accuracy of the trajectory forecast."

A study was made of 20 flights selected for good mechanical behav-

dor, 1l.e., adherence to the 300-mb level and extension to an average

léngth of 1,000 miles. Hindcasts for these 20 flights had an average
error of 20% of the total flight length. This large hindcast error
amounted to 80% of the original forecast error for the same flights.

1.14.2, Influence of Flow Patterns on Accuracy of Computed Trajec-
tories. In broad zonal cﬁrrents of fairly uniform speed the computed -
trajectories will usually have smaller percentage errors than in flows
characterized by large horizontal shears and streamline curvatures,
such as usually occur in a low-index situation with closed circulations
and generally complex flow patterns.

Figure 13 shows a case of the former type. The trajectory has
been computed using the Central Tendency Method with geostrophic winds,
It can be seen from the consecutlive sectlions of the contour charts that
the situation is falrly stationary. Although the percentage error at
first is fairly large (see, for example, at 17/15Z) the percentage
error decreases with time, since there i1s little tendency for the abso-
lute error to accumulate., The data for the observed trajectory, Trans-
osonde #994,,1s taken from Mastenbrook and Anderson [20].

Figures lba, b, and ¢ 1llustrate a case of the latter type. All
three Figures refer to Transosonde #993; the hindcast trajectory has
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been constructed by three different methods to lllustrate theilr rela-
tive merits for this case, In Figure l15a the Central Tendency Method
with geostrophls winds has been used, in Figure 15¢ the Central Tenden-
cy Method with streamline and 1sotach analysis, and in Figure 15b the
Franceschini-Freeman Method. Figures l4a-c show the contour patterns
during three days of the trajectory.

The balloon kept floating for more than 3 days. On the last day
the trajectory completed a loop around the low. Only the Central Tend-
ency Method used with streamline and isotach analysis imitated this
loop. The errors of the three constructions are listed in Table III.

TABLE III

Errors in Computed Trajectories of Transosonde #993
(in Degrees Latitude) -

 Central Tendency Central Tendency
_ Pertod. | ‘Method -~ - | Method (Stream- Franceschini-
(hours) (Geostrophic) -1ine and Isotach) Freeman Method

6
12
18
24
30

36
48 R
2
66

T2
8
)

o
)

* s e o
e & o o o
e o o & o

WWOUHWY FWRHONEHE 0o
}

SEED PN
N
[ ] - - E ]

FIWUWE WO F+=pPpw
O}l FWOW VWU OO C

8

-
Ul OWO'W1O ToWwwwu WHEWHO
Wi POOW FOOOOMW =—OOO0F
Wil VMwoO WVOWME@EFE PO

Average

There 18 a marked increase in error with time. For the C.T.M.~-geostro-
phic this occurs already after 18 hours, for the F.F.M., after 66 hours.
The C.T.M.-1sotach and streamline analysis starts going off twice but
recovers after making the loop.

Such a gradual edging off into a part of the pattern whlch then
rapidly takes the computed trajectory away from the actual trajectory,
is typical of such complex patterns as illustrated above, "Getting off
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_Figure 13.

Trajectory 1n a Broad Zonal Current.

Transosonde #3994, May 1953, at 300 mb; a hindcast of the trajectory
1s computed by the Central Tendency Method using geostrophic winds.,
Thin lines are contours of the 300-mb surface in 100's of feet. -
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low center is indicated,
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A Trajectory in a Complex Pattern.
300-mb contours for 03002 on 4, 5, and 6 May 1953,
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TraJectory of Transosonde #993 1s
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(See page 44 for Figures l4b and c.)
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Figure 15a. Hindcast of the Trajectory of Transosonde
4 #993, May 1953, Computed by the Central Tendency Method,
- Geostrophic Winds, Actual trajectory ls entered. The

[ official WBAN 300-mb analyses were used, Sections of '~
the contour analysis in the neighborhood of 1l2-hour legs

; . of the computed trajectory are shown. The division lines
; { between these sections go through the computed balloon
i positions at 092 and 21%.
Co
;o
. ;
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: Figure 15b. Hindcast of the Trajectory of Transosonde
: #993, May 1953, Computed by the Franceschini-Freeman
X Method. Sections of the contour analyses (official
! WBAN analyses) in the neighborhood of 12-hour legs of

ot the computed trajectory are shown. The division lines
. { : between these sectlons go through the computed balloon
i " positions at 032 and 152.
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o« 40 ACTUAL TRAJEGTORY

s COMPUTED TRAJECTORY

———% STREAMLINES .

= -o — 1S0TACHS (KNOTS) .~
300 uB

N §

. ™
8

\.
100

Figure 15¢. Hindcast of the Trajectory of Transosonde #993,»

May 1953, Computed by the Central Tendency Method Using

Streamline and Isotach Analyses (analyses by AWS Scientific

Services). Sections of the streamline and isotach analyses

in the neighborhood of 1l2-hour legs of the computed trajec-

tory are shown. The dlvision lines between these sections o A
go through the computed balloon positions at 09Z and 21Z, S ey
Near the loop the divisions become more complex. The little R O }'
pentagon in the loop belongs to the 05/03Z map, and the , Y
little triangle to the right of the trajectory crossing be-
longs to the 06/03Z map. ' ‘

the raila" in this manner may occur early_in the trajectory and make
the whole tfajectory poor, as was the ease with the C,T.M,-geostrophic

~In this example.

Furthermore, large errors in the trajectory forecast may occur if
the balloon is released near or comes near an axis of diffluence so
that uncertainty exists as to which side of the axis the balloon will .
float; also, near neutral points (cols, centers of highs and lows) the
trajectories are often erratic, ‘

If the forecaster has any control over the release time and 1t is
imperative to forecast with accuracy, he should walt for a pattern such
that confidence in the forecast exists.

1.14.3, Comparison of Methods. Headquarters Air Weather Service re-
cently evaluated the relative merits of some of the most well-known
trajectory constructions. The methods involved were:
Method (1) - Central Tendency Method with geostrophic winds, N
Method (2) - Central Tencendy Method with winds from streamline ;E
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and isotach analysis., _

Method (3) - Consecutive Streamline Method, backtracking (see
Figure 3b), with geostrophic winds.

Method (4) - Consecutive Streamline Method, backtracking, with
winds from streamline and isotach analysis.

Method (5) - The Franceschinil-Freeman Method.

Streamline and isotach analysis was attempted only over the U.S.

where data were adequéte to warrant such an analysis. This eliminated
comparison with methods (2) and (4) for the part of the trajectories .

| ‘that passed outside this area.

~The. trajectories used for verification were Transosondes #990,
991, 993, 994, 995, 996, 998, and 999 at 300 mb [20] and the balloon
flights F30, F31, F35, F37, and XF41l at 200 mb from, "Constant Altitude
Balloon Flights at 39,000 feet from October through December 1954," - -
Appendix I, Atmosphéric Devices Laboratory, Geophysics Research Direc~
torate, Air Force Cambridge Research Center, May 1955.

The tables below show some of the comparisons. ‘

In Table IV the averages 1n parentheses cannot be compared direct-
ly with the other values, since they are based on a smaller number of

L trajectories.

It 1s apparent from Tables IV and V that the success of a trajec-

 -;torw computation depends more on the flow pattern than on the particu-
‘ lar method used., v

1.15. Choice of Method.

- . From the evaluation reported on in the preceding paragraph, a pref-
erence for any particular one of the tested methods could not be estab-
lished. Comparative evaluations by other authors also show that the
various conatructions accomplish about the same statistically.

We should not draw the conclusion from this that the imethod used
in any lndividual case 1s irrelevant., The statistics only show that if
a method is used consistently in all sorts of flow patterns, the aver-
age accuracy 1ls about the same for all methods.

Some of the methods have theilr peculiar advantages and disadvan-
tages depending on the flow pattern. For example, in rapidly changing
flow patterns any method that freezes the flow pattern for the period
between two consecutive charts, such as the Central Tendency Method,

47



AWSM 105-47

TABLE IV

September 1956

Errors (degrees latitude) of 300-mb Trajectory Hindcasts by Various Constructions, as
s Function of Flight Time.

(Balloons released from Minneapolis, April to August 1953,)

Py

; F%igpt Time of Transosonde
ﬁ 6 hours 12 hours 18 hours 24 hours
| Method No. [ 1 | 2 | 3 | 4 | 1| 2 | 3 | 41|23 1] 3
I Flight No
%7 . 990 . 1.3 0.8 102 008 3.4 2.3 X 2.8 2.7 504 7OA 5.2 603 607
‘Z‘s 991 l.2 2.4 103 - 208 504 205 Lt 3.9 10-1 407 5.8 7.9
% 993 0-5 0.4 0.5 0.4 Oo3 1-6 107 1:5 3.2 300 E 102 6.1 2.0
/ 99, 0.9 | amem | 0,8 wmm || Q| oo | 0085 | mmm [ Ol | === 0.5 1‘3. 1.4
L 995 21 | mom | 22 ame | €02 === | 5.8 | == | 9.6 | ~== [12.2 | 16.0 |18.9
L : 996 300 | mmm | 3,0 memm | 5.2 mmm | 245 | mwm || 30h | immm | LS || mme | -
a 998 - 004 o 004 —— o 019 -onem 1.6 -_"'"' 009 -—anem 203 206 2.7
F " Average 1.1 | (2.2)] 2.1 (0.6)] 2.6 [ (3.9)] 2.4 [(2.1)] 3.9 [(6.8)] 3.9] 6.5| 6.9
AR v . 30 hours [ 36 hours || 42 hours || 48 hours | 54 hours || 60 hours
o Method No. 1 3 1 3 1 3 1 3 1 30 1 3

i | Flight No. L » ,

! 9% 5.2 7.8 7;7 90‘ 1003 1008 1300 11.5 —anew hatnted bt hted

" 991 6.2 7.6 6.2 706 Al? 702 307 '704 902 4.0 10.4 304

: %03 T4 | 2.2 117 4.5(|17.7] 8.0|[22,0 12,8 [|14.4 | 3.2 || 6.3 [ 24.3

994 009 107 2.5 303 108 400 20A 006 hntted - - -

332 23.5 [27.1 [|28.4 | 3.4 [130.3 | 32,0 | 30.9 | 33.6 || 34.0 | 30.0[137.2 | 33.2
: 998 4o | 1,6 ]| 7.3 | 4.5[12.9(10.0[ 26,7 |12.1 {134 | 26.7 | 26,2 | 17.0
! 999 1008 10-3 805 605 405 3-9 303 302 407 3.0 e mem-
AveraggA 8.5 8.4 10,3 9.6 11,7 | 10.8 | 13,1 | 1244 [|15.4 | 15,1 19,5 | 17.5
TABLE V

Aversge Errors (degrees latitude) of 200-mb Trajectory Hindcasts by Methods No. 1

| and No. 5. (Flights launched from Vernalis, California, December 1954.)

: AACS Fixes CAA Fixes

£ Method | Method | Number of | Method | Method | Number of

| Flight No. || "y q No.5 Fixes No.1 No. 5 Fixes-

' F30 2.6 2.4 62 2.2 1.2 4
F31 2.2 2,0 43 1.8 1.9 3
F35 2.5 2.5 20 bl 3.4 3
F37 3.4 2.1 65 5.2 3.5 6
XFA41 2.0 2.6 55 2.1 2.1 17

Average ?-5 203 — 3n1 2.10 ——
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will usually give poor trajectories. In patterns that change slowly or
1ittle the Central Tendency Method 1is a fine method because of 1ts ease
of application.

In rapidly changing flow patterns where the change can be described
fairly well as a translation of the flow patterns, the Relative Trajec-
tory Method or the General Mills' Method will glve good results., 1In
practice, however, the change of the flow pattern can be described as a
constant translation only over a limited region of the chart., Outside
this region the patterns may move with a different speed or remain
stationary; consequently, here a different system displacement or some
method other than the Relative Trajectory Method must be used.

When the flow patterns change rapidly and the change cannot be de-

scribed well as a translation of the type assumed in the Relative Tra- -
Jectory Method, some other method should be used. An example of such a

type of pattern is a circulation that intensifies as 1t m0ves'along.

Petterssen 8 Method, the Linear Interpolation Method, and the dynamic

‘ methods are designed to take such changes into account

From the aforesaid 1t is apparent that the flow pattern should in~
fluence the selection of the method The broad principles for this
selection are outlined above. |

In complex flow patterns with pronounced shears, curvatures,
branch points, and s;ngularities there will, at times, be regions where
dual possibilitles exlst for two diverging trajecteries. The fore-
caster who prepares the trajectory forecast will then be faced with a
dilemma: he has to choase between two possible but widely different
trajectories. The dilemma may occur right at the start of the trajec-
tory or sometimes later in the trajectory. It happens whenever the
balloon comes into the vicinity of a line of diffluence or of a singu-
lar point in the flow (cyclonic or anticyclonic circulation center or a
col). The scientific approach to resolve this dilemma 1s to indlcate
two trajectories and point out to the using agency that equal probabili-
ties exist for each of them. The using agency can then incorporate this
facet in their operational decision.

1.16. Climatological Trajectory Studies.

In planning constant-level balloon operations many problems of a
climatological nature arise. Climatology deals with the probabilities
of certain incidents as determined by the historlcal behavior of the
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; atmosphere. The frequencles of these incidents are established on the -«
IJV basis of past weather records, and 1t is assumed that the future proda- '
P bilities can be estimated from these frequencies.
*f Some examples of the questions which may be asked can serve to
illustrate the object and method of such climatological trajectory
studies: -
a, Glven a certain Area A and a number of potential release
points, what are the most "ravorable“ release points in a certain month
: for balloons floating at 300 mb? when balloons are released from all
i potential release pointa according to some prearranged schedule, the
" "favorable" release points are the ones which have the highest number
G - of trajectories crossing Area A. :
L:’; . b. What percentage of the balloons released from a point ac-
i_ ?” eording to a prearranged schedule can be expected to hit A? (A hit is
& crossing of Area A by a _trajectory.)
c.. What is the probable percentage or hits if a forecaster were
to select the release time? This percentage should be expected to be
_higher than in "b" on the basis that a forecaster 18 able to forecast
}the traJectoriee with some skill. Thie will be the case if the ‘
scatter of the forecast error is smaller than the scatter of balloons ;”}
released according to a prearranged schedule, irrespective of flow o
pattern. Thus, it 18 seen that the forecasting abllity enters as a
factor in this question, ; '
'd. What is the probable distribution of flisht time amons the
trajectories from a point to Area A?
These are just a few of the questions which might have to be answered
in the planning of constant-level balloon operations.
" One way of providing the answers to these questions 1s to operate
N with "paper" flights. For instance, to answer question "a'" & series of
i historical 300-mb maps for the pertinent month can be used for con-
struction of a series of trajectories from the potential points. The
number of trajectories that intersect Area A from the various points
are tabulated and will yield the required information, It 18 to be
noted that several years of data have to be used since the flow patterns
during a certain month may vary consideradbly from one year to the next.
The table will also answer question "b",
Gathering the data needed for climatological trajectory studles by
the "paper"-flight method is a laborious task since a large number of
trajectories have to be constructed to obtain representatlve samples. f}
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At the present this must be done by hand. At some future date it is
visualized that analyses for machine processing will be available and
the task will be considerably lessened.

There 18 another avenue of approach offered by the statistical
theory of turbulence. If the statistical properties of the "large-~
scale" turbulence could be established by analogy with thosec of the
small-scale turbulence, these properties could be used directly. How-
ever, the necessafy statistical properties of the "large~scale" turbu-
lence are not sufficlently known at the present time if, indeed, they

do exist.
S. B, Solot has developed a semi-empirical method of solving cli-

- matological problems in connection with trajectories. The method 1is

much iess time consuming than the "paper-flight" method and gives, it
is claimed, results of comparable accuracy. For information on the

- method, refeﬁence is made to Air Force Surveys in Geoghxs cs No, 61,
‘ "Meteorological Aspects of Constant Level Balloon Operations,”" Air

Force Cambridge Research Center, December 1954,
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Section IIX

SOME THEORETICAL ASPECTS OF CONSTANT-PRESSURE TRAJECTORIES

2.1. Trajectories hy,Particle Mechanies.

2.1.1. Traiectories and the Contour Field. With a few minor simpli-
fications which amount to less than 1/10 of a knot per hour, the accel-
eration of the horizontal motion of the atmosphere may be written:

(1) V=-tkhx (V-7 )

where V 1s the horizontal velocity, vg is the geostrophlce wind, f is the
Coriolis parameter, and K 1s a vertical unit vector.

Turbulent stresses have here been neglected, but even 80 the equa-
tion probably has a high degree of fldelity for.thé scales of motion
dealt with on synoptié charts — except for the motion in the lowest

‘few thouséndé of feet. Here 35, the geostrophic wind, 1s an expression

for the horlzontal pressure force -a.va = -gvpz; Vp is the horizontal
del-operator applied to a quantity in an isobaric surface, and z the

helght of this surface.
-> r >
(2) —%kx v o2
Thinking of the wind v as a function of horlzontal position, for

' instance x and y, pressure p, and time t:

V=v(x, ¥y, p, t),

we can write:

. > v > dp ov

(3) v = (3?)p + Ve va + 3t
Defining

(4) =( ) +v-vpv,

v may be 1nterpreted as the horizontal acceleration of an object that
is constrained to remain in the pressure surface p and that undergoes
a horizontal displacement ldentical to that of the air that surrounds

it at any time,
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This motlon is well approximated by a constant-pressure balloon,
Dy means of a control device a hijh-level constant-pressure balloon
is usually kept wlthin *10-15 mb of the intended floating pressure,.
The large norilzontal drag coeffliclent of the balloon makes it respond
to acceleratlons in the wind almost instantaneously, so that the

trajectory of the balloon will closely be determined by the equation.

< ~» - -) >
(5) vy = =Tl X (v — ) - dt op

The trajectory of such an object tnat stays in the pressure
surface and moves with the winds in this surface will he referred to
as a. constant-pressure trajectory.* We see from Equation (5) that
the horizéontal acceleration of this object is determined by:

‘ a., The Coriolis acceleration of the geostrOphtc departure
v - v& in the surface and

: o, A term -~ H% ov comoosed of the individual pressure
change dp/dt of the air in the pressure surface and the vertical
wind shear dv/dp. Since dp/dt 1s mainly given by the vertical motion,
the second term will be referred to as the vertical motion term.

2.1.2. Iffect of the Vertical Motlon Term on Constant-Pressure
Trajectories. The vertlcal motlon term can also be written:

dp oV
—dt Jp

where w. is the vertlcal veloclty component of the alr and Wy 1s the
vertical motion of the pressure surface, Since the motion is mainly
‘geostrophic 3-v 2z 18 small compared to w — wp if the latter 1s
appreclable at all, This can be seen by an example:

- 3. z ~ (w-w_)]
—-B-Z-VVp w Wp

-> £ > >
V.2 == v Xy ok
Ve g o

P
Choosing 3q =50 m sec'1 with a geostrophlc departure normal
to V_ of 10 m sec * magnitude, (V.v_z) = 10~ sec™t x 1071 sec?® m! x

10 m sec™¥X 50 m sec™L = 0,5 em/sec., at 40°N,

*3ince the main concern is this Manual is the construction of constant-pressure tra-
jectories, they will often be referred merely as trajectories, meening constant-
pressure trajectories if nothing elae is stated.
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Even this fairly large ageostrophic motlon is equivalent to the t

1 very modest vertical motion of 0., cm/sec. Hence, the term G'sz can be
; neglected when compared to (w — wp) which measures the vertical motion
h v through the pressure surface. We obtaln for the vertical motion term:
S _gp ¥ __ v

| td -~ 3z
We will assess the magnitude of this term by a numerical example,
= 3 om/sec and dV/dz = 5 knots/1000 feet, we get

dp OV _ -
- 3% %" —1.8 knots/hour.

W - wp)

s

Choosing w —-wp

s ey

‘If these conditions, (w — wp) = 3 cm/sec and 83/32 = 5 knots/1000
feet, were sustained over 10 hours of the trajectory we would meke an
error in the computation of the position of the object of approximately
+§ x 1.8 knots/hour X 102 hour = 90 nautical miles by neglecting the
vertical motion term and computing the trajectory according to the

&
s R R T AR R e I T

£ equation:

5‘0 . iy -+ > - >

Bk - : = =K X -

- The trajectory will be too long by 90 miles in the example, )
: The conditions in the example chosen cannot be sald to be unusual. fm):

Maximum-wind and shear charts [32] show that 33/62 2 5 knots/1000 feet
may occur in long elongated bands in pressure surfaces underneath the
maximum-wind level, and similarly -B?/bz 2 5 knots/ 1000 feet above the
‘ - level of maximum winds. 3 cm/sec appears to be a moderate rate of

{ vertical motion. Various studies show that vertical motions of. this
magnitude may occur over large areas for extended periods of time.

A Neiburger and Angell (23] evaluated the vertical motion term along
] constant-pressure-balloon trajectories using the adiabatic method for

' obtaining dp/dt and obtaining 33/Bp from rawins in the vicinity. They
i found that the magnitude of the vertical motion term was on the average
‘ : 20-25% of that of —fk x (V - v ); omission of the term as done in

3 ? Equation (6) leads to a fair approximation of the trajectory.

: E Since vertical motions are mostly unknown, there 1s at present

no method whereby we can make allowance for the vertical motlion term
when computing constant-pressure trajectorles., All we can state 1s
that cumulative errors up to 100 nautical mlles may be made over a
period of 10 hours when computing trajectories according to Equation (6)
because of omitting the vertical motion term. However, other sources

of error, such as insufficient knowledge of the contour field, 38’ at )
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all times, usually lead to more serious errors. Therefors, we may
state that in the present state of the art of constructing constant-
pressure trajectories by means of dynamic methods, omission of the ver-
tical motion term in most patterns does not lead to any gross errors,

When the wind shear is large, 1t 1s usually directed along the
trajectory. The large-scale vertical motlons in the upper atmosphere
are in the mean distributed according to the formula: subsldence
downstream from ridges and upstream from troughs, upward motlon down-
stream from troughs and upstream from rldges.

TOO LONG TOO SHORT

I
, | I
ABOVE THE LEVEL OF MAXIMUM WINDS
. I
TRAJECTORIES TRAJECTORIES |

HORIZONTAL
STREAMLINE
(CONTOUR)

— e ]

BELOW THE LEVEL OF MAXIMUM WINDS

TOO LONG
TRAJECTORIES

— v —— o — ey ot

_ T
TOO SHORT |
TRAJECTORIES |

Figure 16. Schematic Diagram of the Effect of Neglecting the
Vertical Motion Term when Computing Dynamic Trajectories.

Hence, neglect of the vertical motion term will lead to the type
of errors 1llustrated in Figure 16, when the trajectories are computed
by dynamic methods.

2.1.3. Dynamic Methods of Trajectory Computations. Referring again
to Equation (6), we see that if the contour field of the pressure sur-

face is known as a function of x, y, and t, the treajectory of an object
is uniquely determined i1f its initial position and veloclity at a time,

t = 0, is known.
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Hethods utilizing idquation (6) for constructineg trajectories
will be referred to as dynamlc methods, and the trajectories computed
by them as dynamlc trajectories,

The efforts that have been nade ln the past on dynamle tra-
jectories can ve grouped in two classes according to how 33 is

vrescribed: .
2. The contour field is prescrived by mathematical func-

tions. : : "

b, The contour fileld is prescribed graphically.
The work carried out in the first class is not directly appli-
cable in practical trajectory computations since the contour fields
occurring in practice only poorly resemble mathematical models,
both stationary And movinc ones, Nevertheless, the contributions in
this field have great theoretical interest, Theykillustrate the air

flow in the various oressure natterns, Also, they have been partic-

ularly interesting throush demonstrating that large ageostrophile
motions may occur; this has 1auer been verifiled by study of. actual
trajectories, computing v -V from the accelerations obtained from
the trajectories (Durst and Davis [4], Emmons [6], Neiburger and An-
gell{23], and Godson {111).

The graphical methods are directly applicable to thevpractical
meteorological situation, i,e., 3 is given by contour charts at
intervals of 12 hours or 24 hours,

In vetween standard synoptic hours, intermediate charts may be
drawn by interpolation for sufficiently small intervals to satisfy
the convergence criteria of the graphlcal integration method, or
some transition from one chart to the next (such as a time-linear
transition in the local 3~) may be assumed. Two of the graphical
methods will, therefore, be described in detail further on,

21,0, Mathematical Trajectories. These are trajectories in
Class a, above,

2.1.4.1, fg_z_ggggtggg.

The simplest of all geostrophic-wind fields is a statlonary
uniform one, 3# 1s constant in space and time, Equation (6) is
dlrectly integ;able. 3ince 3, 3@’ and v are all coplanar vectors,
it is convenient to renlace the vector symbols by their complex
equivalents:
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-
v =€ =u + iv
X > N + 1 =/=T
§ vg Y ug ivg
L Equation (6) may then be written:
b (6') € = -£1(€ - 7)

or for the position vector z = x + 1iy:

. 4 £12 - f1y = 0
with the solution € =y + (6° - y)e'ift

(7) z =yt —% (e, - (1-e

for the initial conditions 2z =0, € = €, when t = 0.

f has been treated as a constant.
- This motion plays a fundamental part in the theory of atmospheric

trajectories and will be discussed here in some detail.
In vector notation: -

(8) F - vgt +'B'_12'f'(£') ‘(vo - -‘;g) - [1. - c%sift)] ¥ x,($o - i"g)

where * 18 the position vector of the object. Equation (7) or (8)
gives the trajectory of the object. Its displacement has two components:
oLk ( : a steady progression, (3gt), and an oscillatory displacement with a

period

T e e

-ift)

R AR R e e e o

S T R T B T T T T
O SR R SR BT A~y

s DT
N AT T8

I - 2r _ 12 hours _
: o T = T = T sinée half a pendulum day.

Figure 17 1llustrates a grappical construction of the displace-

3 ments., The object starts out at A at t = 0. With the geostrophic

i velocity it would be at B at time t; with the initial veloeity it would
§ be at C; aetually it arrives at D. D is located thus: From A, a right
g normal to V. -V 1is drawn; centered on this normal a c¢ircle with a

] redius § |V, - Vgl 18 drawn through A. From OA an angle 6 = ft inter-
: sects the circle at E. AZ is the oscillatory component. When AE 1s

i added to AB, KD = # is obtained. When t varies from O to T, point E
% . runs around the entire circle anticyclonically (inertial circle).
Eﬁ It will be seen from Figure 17 that the trajectory is described by

2 the point A rigidly fastened to a wheel, radiun-% [¢8I, concentric with
g the first cirqle, and rolling on line LlLl‘ The point runs through
£ the trajectory at the proper speed when the wheel rolls with an angular
¥ speed of f. When l? - vl % lv ] the trajectory will be a curtate,
&i common, and prolate cycloid respectively The prolate cyclolds have

e ~ loops.
R &; Figure 18 shows the trajectory at 43°N corresponding to conditions
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; ; Pigure 17. Construction of Trajectory of a Uniform Geo-
sl strophic Wind Fleld.
. v = 50 knots, 30 = T0 knots 30 degrees to the right of 33. The dis-
oL tance scale gives an idea of the deviatlons from the geostrophic tra-
3 g _jectory that arise. The period at 40°N is 17.8 hours. The trajectory
; 1s a curtate cycloid,
i In this connection it is interesting to note that Nelburger and
v Angell [23] in their study of Navy transosonde flights (at 300 mb)
ji found an average period of about 18 hours in the sign of the cross-
;ﬁ contour motion of the balloons. The mean latitude of the trajectories
o was 35-U40°N; release point was Minneapolis. It appears that this os-
;ﬁ cillatory motion around the geostrophic trajectory as a mean position
ff line with a period near half a pendulum day may be a common occurrence ;@
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100 N. M.

§210*sec’
GEOSTRCOPHIC TRAJECTORY

Ts(7.8

O Wy=80 KTS

Vs T0KTS

TRAJECTORY

Figure 18. A Trajectory in a Uniform Geostrophic Wind Field
at 43°N. With the initial conditions stated in the diagram
the trajectory 1s a curtate cyé¢loid with a period of 17.8
hours (half of a pendulum day

in actual trajectories, although the period of the oscillation will be
more complex in the actual contour patterns of the szynoptic charts,
Referring again to Equation (8) and defining a dimensionless oper-

stor X*( ) (applied to a vector quantlty) as
x-(>:~9-iﬁﬁ°’(>-“;g“f”kx(>
vhere X depends on 1atitude and time only, we can wrlte
PVt s X (V. - V)t
r v vy gt

H‘

For angles of £t 7 1 Equation (b) may be approximated by
(%) SRR S (AR ot

where
X* () = - %& Y, (—El—

For t - 2 hours, £ = 107" et (40°N), T - T*x 0,16 k X (30 - 3g).

For Iv - G”] = 20 knots, |r - ¥*] = 3.2 nautical miles. This small

difference 15 negligible in ordinary map work.
For the velocity at the end of the trajectory we obtain with the

same approximations from Equation (7):
(10) V¢ = v - £k x (v - th)

Formulae (Y) and (10) are of interest since they are the formulae
used by Franceschini and Freeman [9] in their graphical trajectory con-
struction., In thelr procedure 33 is ldentified with the time~-space
mean of the geostrophic wind over the trajectory, and only a short bit
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of the trajectory to t - 2 hours is used.

2.1.%.2. 3gv: 7g(t) or v = vy(t).

: This case, where 3w i8 independent of :x and v but changes with
? t, was first studied by Hesgelberg [15] and later by Stewart [28] and
{ Forsythe [8].

The general solutlion is

3 - it &
¢ eIt | amilt Seift

: €. € ~(t)dat.

o}
Choosing a simple function
Y(E) = vy + at
where a 1is the constant rate of the local geostrophic wind change, we
obtain ' - '

Y € = A, e -
(11) € = vy tat +F 4 (£, = 7y

Brunt and Douglas [3] called the quantity
For the trajectory we get

S fat 1.2 A;. o _ Ay g, _ =1ft
(12) z = Yot + = + But f((o Yo ?—) (1 ~ ¢ .)

e
- 1%)e irt

% the iszailobaric wind.

li——'

H

T I SR B T TR IE T
e I T R T I TR T

The magnitude of the local variation of the geostrophic wind ”g
may be approximated by that of the wind itself, Sutciiffle and Sawyer
{29] give the 24k-hour root-mean-square vector change of the wind at
BQQ mb as 48 knots., This glves a smoothed root-mean-square value for
a of 2 khots/hour. This case 1s further discussed in sub-section 2,1,6.

-

2.1.4.3. Other Mathematical Functions for v_. Forsythe [8] studied
E trajectories in the fileld, 6g = (ax + by + e)T +b(dx ey 4+ h)J (sta-
. tionary linear vector field), and also the general case of statlonary
. circular contours.
: Gustafson [12] used various mathematical models for the con-
% ; tour fleld, among them a propagating geostrophic jet-stream wave. He
' was alsc able to take the variation of the Corlolis parameter into
account. A differential analyzer was used since the models were de-
fined by equations that could not be integrated by tabulated functions,

2.1.5. Graphical Construction of Dynamic Trajectories. In practice
the 38 field is given by synoptic contour charts at 12- or 24-hour in-
tervals. These charts may be analytic or prognostic, The characteri-
zation of the contour field is now much less precise than when it 1is
presented mathematically. R
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The chart may be divided up in seciions such that the 'character'
of the contour field may be sald to be falrly uniform within one and
the same section, but varies from sectlon to section. The size of a
section may, for instance, be 100 x 100 (nautical miles)z. Within a
section, 63g/8t may be assumed to be constant durihg a time Interval,
for instance, 2 hours. By having "uniform character"' is meant that the
contour fleld within the section 1is sufficlently accurately described -
by constant values of certain parameters. The whole chart is then
built up of these mosaic sections with the characteristic parameters
constant wlthin one and the same sedtion and time interval, but gener-
ally different from one section to the next and from one time interval
to the next.. o A o

. As far as characteristic parameters are concerned the choilce is to
a certain extent. open. ' The parameters must be easily measurable and

’graphically presentable, Furthermore, only parameters can be used

which determine such a contour field within the section so that the txa-
Jectory through it may readily be obtained. The degree of complexity
of the parameters we may choose is also greatly limited by the uncer-~
tainty with which the contour field i8 known. “On analytical contour
charts this uncertainty 1s lmposecd by insufficlent data coverage, ob-
servational errors, and indeterminacy of the contour field between the
synoptic hours. On prognostic contour charts the uncertainty 1s en-~
hanced by errors of prognosis.

The sections and intervals do not have to be of the same size, ‘
Where the parameters vary slowly in space and time, longer sections and
intervals may be chosen than when the variations are pronounced.

As parameters we may think of: 33 itself, 63g/bt, geostrophic
shear, contour diffluence, contour curvature, the constants of the best
linear fit to the $g field, etec. Even 1f trajectories through fields
characterized by constancy of 38’ 638/Bt, B¢g/bn, etc., or combinations
thereof may be obtalned by graphical means, measurement of the parame-
ters and the ensuing graphical trajectory construction is sv time con-
suming that the process for any but the simplest parameters 1s not
Justified in view of the uncertainty already mentioned.

One of the graphical methods for construction by dynamical trajec-
tories is the method of Franceschini and Freeman f9].

2.1.6. The Franceschini-Freeman Method. This method assumes a con-

stant 38 over a section and nc change of 38 during a time interval.
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The time interval is chosen equal to 2 hours. The section is chosen as
a strip along a vector 2 hours times VO where 30 is the initial velocity,
which must be known. The width of the strip 1s chosen so that it takes
in the trajectory. At the outset the trajectory is unknown, of course,
but a sufficiently good approximation of 1t can be made to determine

The average ggostrophic wind over this styip

1s measured. We will denote it with vg. Usually the space~time aver-
age vV over 2 hours times v = KB is good enough (see Figure 10). This
quantity v_ is an approximation of the space-time average geostrophic

wind over the trajectory.
With V. as a constant field, Equation (2) glves the displacément

becomea -
‘ x*()~-052‘91no-i2x(')-018313124:().

- X* is dimensionless and only dependent on latitude ¢.

The authors have constructed a scale for performing the operation
X#( ) on the vector 2 hours times (vo - vs). ‘The graph 1s reproduced

in Figure 8. The use of it 18 explained in sub-section 1.12,
The velocity at the end of the 2-hour period, which will be the

initial veloecity for the next perliod, is found from Equation (10).
initial-velocity displacement to be used for the next interval will

The

then be
| ;, Vet = Vot~ £tk x (F* - T.t)
For t = 2 hours we get |
| 2V% = 2V, — 1.05 sin ¢ (% — 2V,)

Figure 19 shows dlagrammatically how the Nomogram of Figure 8

determines the trajectory terminal ** and the next initlal-velocity

displacement 2V,
To get V. for the 2-hour intervals between synoptic hours, the

assumption can be made that the local 33 varies linearly with time:

Ty = Cp + & [T = (gl
where (¥ )h and (V )h412 are the geostrophic winds at the synoptic

hours h and h + 12, respectively. (v ) 1s the geostrophic wind during
the kth interval after h-hour. For choice of intervals see paragraph

l.12.1.f.
It will be noted that the changing geostrophic wind field 1s taken
into account when it comes to determining the constant 3é during an in-

terval, but the effect of geostrophic wind change during this ianterval
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SRR is neglected. The effect during this interval is that of the isallo-
v baric wind, as exemplified in the case of Equation (12).

o , 1= 105 SINJ KxF
. . B2V — Z
| | "\Ds-o.szsnw)mc

| | . DE=-08SIN'QC
Figure 19. Franceschini and Freeman's construction
of the trajectory for 2 hours starting f#om'point P.
£ 1s the 2-hour displacement with the meéan geostro-
phic velocity 33 and ﬁ‘the 2-hour displacement with
- the initial veloclty v 0. From these bvasie veators
% £ the terminal of the trajectory, r*, and the velocity
E 3 at this point, V%, are determined as shown in the dia-
B ‘ ' - gram. The 1n1t1a1-velocity displacement for thg next
N 2-hour period 1s 2V* and 1s set off from the end
; point of T*; a new mean geostrophie-velocity dis-

placement X is determined and the process 1is repeated
for as many periods as 1is desired.

B R TR TR T

TN B

oo,

If we denote the displacement computed with the isallobaric effect
from Equation (12) by 2, and the displacement computed without this
effect after Equation (7) by 2z, their difference is

; _ lot , 1.2 o ¢ _ -ifty,
] z, — 2 = SF° + zat (1 e );

for £t {1 this approximates
_ lagt3
? Using the smoothed root-mean-square value of a from sub-section 2.1.%,
L _ o = 2 knots/hour and ¢ = 2 hours, [z, — z| is less than 1 nautical mile

_4;:»:.&;\

at #0°N. Hence, the effect of local changes of the contour field may

63




September 1956 AWSM 105-47

generally be lgnored during a short period of 2 hours, and the formula
(9) of Franceschini and Freeman is valid for an interval of 2 hours
even with large local changes.

: 2.1.7. Extension of Dynamic Methods to Longer Intervals. A dynamic

method may be constructed for perlods longer than 2 hours. Because of
“1f% for values of £t >1, the power

the slow convergence of the series e
serles for the exponential cannot be used
In addition 1t is no longer feasible to approximate the v8 field

by the mean over the trajectory since new effects arise through the
i varying V_ field and these effects assume considerable proportions for
‘. £ 2 hours. One approach is to assume some simple type of transition

in the fileld either tied to fixed coordinates or to coordinates follow~

ing the motion of the air. ~

The graph and the operations do not become more complicated by

using ‘the exponential inatead of the power sebfies. The power series

used by Franceschini and Freeman is a convenience: when computing the

traJectory by numerical methods for short periods but 1s.an‘unnecessary -
approximation in graphical computations. However, the form of transi-

tion of the v_ field will have to be determined by the values of 3é at ™M
; the initial and terminal points of the trajectory. The location of. the -
j ;’f terminal point is not known at the outset; so vg at this point cannot
f 5 be evaluated either. This difficulty can be overcome by resorting to a
i % series of successive approximations.

The result is that some time 1s saved by extending the method to
periods > 2 hours. Greater accuracy probably is achieved also hy work-
: : ing with larger increments since accumulatlive scaling errors, which
P % arise through working with small increments, can be eliminated.

; A dynamic method of this type will be described in the next sec-
tion under the name of the Air Weather Service Method.

LB SRR TS

# B ESE AT

S

Bt
G TS WA e R % B e ELEA 22 LB T e g

% 2.1.8. The Air Weather Service Method. In sub-section 2,1.4.2, the
trajectory was computed through a geostrophlc field that is constant in
space but changes linearly with time, v = vy  + at where a is the local
acceleration. The trajectory is determined by (11) and (12) for the

initlal conditions: 2z =0 and ¢ = Eo for t = 0.
We may also interpret this solution differently. We may assume

that the geostrophic wind affecting the particle in its trajectory
changes linearly with time or, in other words, that the individual ac-

celeration of the geostrophic wind is constant:
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av
EEE =y = B = constant

where B is a constant vector.

'y='y°+ﬂt

Y-

(13) B = —p—
"OZtZT

where T is the period of velidity. We need not be concerneqlabout how
this linear change of Y along the trajectory arises. It may be through
local changes of the contour gradient, through curvature or spreading
of" the contours, or through lateral shear of the geostrophie wind,
These all have to be balanced such that ‘ -

av & -
HEE = 3?5 + ?-vp¢éo= B = constant

'during the period 1n question.

The success of the method will, of course, partly depend on how
well condition (13) 1s met in nature. Since upper-air charts are avall-
able at 12 hour intervuls,it is natural to choose 12 ‘hours as the
period. For a period of 12 hours, Equation (13) 18 usually a good de-
scription of the pressure forces acting on a parcel, Whenever this is
not the case, T = 6 hours will be used, The choice of the period is
discussed at the end of this sub-section.

A priori, there is-no reason to believe that a transitlon of type
(13) is inferior to the assumption that the local geostrophic wind,
changes linearly with time. |

With assumption (13) the dynamic equation (6') is again integrable
and has the solution, formally identical with (11) and (12):

(1) 2 = vt + 288 4 2pe? — 4 (¢ - v, - $B) (1 - M)
(15) € =y, + 2 + Bt + (e, — v, = $8) &"11"

for the same initial conditiong: z =0, and € = Eo for t = 0,

Inserting the value of B from (13) and writing 8 = £t, we obtain

after some rearranging:

i

(141) &=y, + (v— )3 +-%~-§-§ (1-e %)) = (e, - v,) & (1 - 29

1}

it

(151) €=vyy + (v=v) [1+5 (1=et0)] 4 (e, ~v,) e2?
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T

This form is convenlent for graphical evaluation. e

Once the period "t" is chosen, we notice that the trajectory 1is
determined by three quantities: 1) the initial geostrophic wind, Yo'

: 2) the vector change of the geostrophic wind over the period, v - Yo

/ and 3) the initial geostrophlc departure, 60 = Yo Each of these
quantities are multiplied by operators that depend on latitude only.

If the velocity vectors Yoo (y - yo), and (6o - yo) are represented on
a scale of 10 knots corresponding to 2 degrees of latitude on the map-
e scale and projection used, z/t will directly be the map displacemént
aftér 12 hours since a velocity of 10 knots corresponds to a displace-
ment of 120 nautical miles = 2 degrees of latitude. '

The length of a latitude degree varies somewhat with latitude for
vthe map projections used by the Air Weather Service. ' Least variation
is found on the Lambert conformal projections. For example, on the |
Lambert conformal projection true at 30° and 60° the length of a lati--
tude degree deviates from the standard (at 30° and 60°) by 1ess than

3%% between 25° and 65°.

On a polar-stereographic projection the length of a latitude de-
\A 5 gree varies between 25° and‘65° by'as much as 18% from the mean length
at about 38°. Hence, when the Lambert conformal projection is used,it
will be accurate ehough to use a constant scale for the latitude degree
in the latitude dand from 25° to 65°. For a polar-sterographic projec-
tion the varying scale of the map must be used,'i{e;; when the answer
comes out as‘a displacenient of so and sd many latitude degrees, the
corresponding map displacement must be set off by using the length of a
latitude degree at the appropriate latitude. This illustrates the ad-
vantage of using Lambert conformal projections in. trajectory work.

In equations (14') and (15') vy, the geostrophic wind at the end
point of the trajectory, is not known at the outset since it is the end
poiht we seek, However, we may use a procedure of successive approxi-
mations whereby we can find an end point satisfying equation (141).
This procedure is reminiscent of the procedure used by Petterssen in
his kinematic method (see sub-sections 1.6 and 2.2.2).

The procedure 18 schematically 1llustrated in Figure 20a. We can

rewrite equation (14'):
" z _ . -
(14 ) T = A +B ['Y ‘YO]

where the vector A and the non-dimensional operator B are determined -
by the conditions at the initial point only (latitude, initial velocity, ;lg
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4 ’ vergence of terminal point of

2 trajectory during a specified

1 period.

3

and initial geostrophic wind).
’ o~ i _ .-18
(152) A=y (6, _v) 3 (1 —-e")
RS S S U _ =16
(15b) Bo=lz+g-iz (1=

First, an approximate location of the terminal is determined.
This may conveniently be the terminal of the trajectory through the
inltial point in the sﬁationary geostrophic flow of the Chart h (begin-
ning of 12-hour period). This first approximation we may denote by Zq.
The geostrophic wind at this point on Chart h + 12 (end of 12-hour per-
In Figure 20a, Po is the initial point and P, 1s the first
Next, v, is inserted in equation (14")

£, iod) is vy
S approximation of the terminal,
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and a new terminal, z,, is computed (P2 in Figure 20a): 'f}
z
2-« o . -~
%"‘"A-B['Yl ’YO]
Usually, the geostrophic wind at P2, Yoo is different from Yy - If
Y and Y, agree within the accuracy of measuring geostrophic winds on
the map, P2 is the terminal sought. Otherwise, the step is repeated
and we arrive at a series of approximations:

A+ B (vy =~ v,)

Nrle‘
i

oA B (vg ~%,)

z . :
.1;1-1-1 A d B'(‘Yn - "Y )
where the geostrophlc velocitles Yo 3,...,7 are read off the
Chart h + 12 at points Zp) z3,...,zn respectively. This series 1s ex~
tended until the difference Yn = Tn-1 no longer exceeds the accuracy of
the chart evaluatinn of geostrophic winds. This accuracy 1is about 5 .
knots or 10% of the wind speed, whichever is greater. This stage will "’ }
be reached usually at the second or third approximation.
A graphical method for solving (14') and (15!') by the series above
is described in sub-section 1.13, |
This series above may be represented by:

241 k=n
S =4+ 2By = %)
k=1
n = l, 2).000 .
z, is an 1nitial guess of the terminal and Y1 the geostrophlic wind at
this point, The series Z1s ZpseeeeZp is absolutely convergent when
BTy, = Y171
= -z )&
Since B (vn - Vn-l) = (241 zn)t’ we obtain as the condition for
absolute convergence:

(16) &yl ¢ L
ldz] [Blt
In the 1limit we have written Ypi1 ~ Yp % dy and 2,41~ %p = daz. .
d"j
68
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It should be noted that 7y 1s generally not an analytical function
o of z so that the value of the differential quotient ldll depends on the
P azimuth of dz. The factor [B| is determined from (15b):

' 1
| : Bl = ( -é—-—-i-é- (1 — cos 6)1% + [%—é’é asine]z)/2
@1 . The condition for convergence may be expressed in graphlcal form
| as the 1imiting value for the vector change of the geostrophic wind

over a horizontal distance of one degree latitude (60 nautical miles)
" This is done in Figure 20b.

Since this is the condition for absolute convergence, convergence

B in actual'cases may be obtained in fields of greater spaoe variation
2 ? than indicated by these limits if the azimuths of space progression are

R T g e

; a’favorable.
5 ; : 2.1.9. Practical Difficulties of Obtainiqg Accurate Trajectories by
gl v Dynamic Methods. In the methods described in 2.1.6 — 2,1.8 we have pro-

cedures for constructing fairly accurate trajectories when the contour.
fields are accurately known. The vertical motion term which 1is about
. 25% of the effect of the geostrophic departure is, of course, neglected.
(.f - This is, however, ‘a minor source. of errors as will be pointed out later
“ in this section and as alsc 1s apparent from sub-section 1,14,
, Is the upper-level contour field known 8o accurately that the
oo "dynamic" trajectories constructed from them are improvements on tra-
Jectories constructed from more simple assumptions for example, geostro-
phic trajectories? :
b : Studies of actual constant pressure-balloon trajectories m.y throw
E some light on this question, The accelerations of a constant-pressure
£ : balloon may be computed from the observed trajectory. The root-mean-
L square (RMS) error of the acceleration is given by:

o(aa) = VZo AI‘)

LTSRS Er. TL

where o(Ar) is the RMS-fixing error; t and T are the time intervals over
which velocitles and accelerations respectively are averaged (e.g., see
Anderson [1]). For t = 2 hours, T = 4 hours, o(Ar) = 2.5 nautical
miles, o(AA) = 0.45 knots/hour. The figure o(Ar) = 2,5 nautical miles
is applicable when the balloon fixes are given by following aircraft,

; When fixes have been obtained from time-~lapse photos by cameras suspend-
; ed from the balloon, still greater accuracy is possible, Fixes obtained
by radio direction finding (RDF) are far less accurate. For a certain

=
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sample of balloon flights at 300 mbs, Neiburger and Angell [23] found ’ §
o(Ar) = 8.2 nautical miles for positioning by RDF. }
Emmons [6] calculated accelerations from constant-pressure balloon ;
data at 200 mb. The fixes were determined by trailing alrcraft. Hence, }
. the value g(AA) = 0.5 knot/hour is applicable to this sample. From ;
' ’ Equation (6) he computed the associated geostrophlc departures,
i B-=v- vg. We will denote the departure computed from the trajectory
' in this manner by Bt‘ He also computed ) directly: V was obtained
from the traJectory, and vg was obtained by 2 different methods 48 fol~ .
; low: f
ﬁ : a. From the usually smoothed 200-mb contour charts analyzed :
2 from height data alone (no pibals or rawins used), The departure com- :
| puted by this method will be denoted by B,. » | | '
é ' b. Objectively from the constant contour rield fixed by 3
Astations in a triangle bracketing the trajectory segment. Sometimes 2
- different triangles were tried for the same segment, We denote this :
departure by B or (B;); ~ (B;), when two triangles were used. ]
Table VI gives a comparison of the departures 3t’ 3 , and 3 over o ;
nine different segments meeting the accuracy requirements stated above. ‘ f”} :
Emmons checked the vertlical motion term and found that it did not i
exceed 0.5 knot/hour in any of the cases. Therefore, the values in the
first line of the Table must be taken to be very near the true values.
Even using Neiburger and Angell's mean value for the vertical motion
term, the first line should give the departures with an average error
of 25%. | »
- We notice that the departures obtained by the methods discussed in
sub-paragraphs "a' and "b" above are generally too large; the depar-
tures obtained by triangulation are in the mean more than twice the
true ones.
Lines 4 and 5 show that the errors of the departures obtained from
, charts are larger than the departures themselves. From this 1t does
| not appear feasible to determine the "correct" geostrophic departures
from contour analysis at 200 nb. By "correct' geostrophic departures
is meant the departures which would give the correct behavior of the
balloon when computed from Equation (6). From line 6, the discrep-~
aricy between the methods in "a" and "b" above is in the mean 24 knots,
which 18 larger than the quantity we want to measure. Line 7 shows
that the choice of triangle influences the result by 23 knots in the "?

mean.
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TAELE VI

Comparison of 200-mb Geostrophic Departures (knots) from Contour Charts
(32 and D.) with Those from Constant-Pressure-Balloon Trajectories
(3t). (Where two values appear in a square, two triangles were used.)

Case Number ,

1 2 3 4 5 6 7 8 9 | Mean

|3, | 5| 5| 11| 11| 18| 3| 15| 20| %0 | 14

I3, | 4| 39| 32| 8| 10| 12| 22| s9| 22| 22

63| 43 k| 19| 37| 76| 12|

1351 9| éo| 35| 2| 23] k| a4| 54| 15| 32

B, - B, 5l 37| 36| 15| 9 9| 13| 32| 54| 23
- | 51| 51 6| 20| 17| 37| 40

lﬁt.v 331 12| gzl i5|. 18 8 51 76| Bh| 25 30
3 | 22| 67| 4| 21| 21| 6| 34

1(85), = (Bl --| 3] sl --| 9| 16| 20| 36| 20| 23

| V1 . 24| 63| 66| 61| 53| 40| 64| 50| 104 59

lﬁtl/l3| 0.21(0.08/0.17|0.18]0.33(0.08{0.23(0.40[0.39 | 0.23

These discrepancies are mainly due to the errors in the heights at
200 mb. The smoothed analysis removes part of these errors so that
Method "a" 1is generally a better method than "b", but the residual
error 18 still so large that the departures cannot be assessed,

Note that ‘Et" Bl = IV - (Gg)t -V + ($s)z| = 1(38)t - ($g)z|.
Consequently, the mean vector errors in determining the geostrophic
wind by Methods "a" and "b" were also 23 and 30 knots, respectively.
The last two lines give the wind and the relative geostrophic depar-
ture. The average ratio [Btl/[3l was found to be 0.23. Neiburger and
Angell fourid 0.394 at 300 mb for a much larger sample. I appears from
this study that the error in determinling ¢g in middle latitudes is
20-25 knots at 200 mb over a well-observed area such as the United
States (1949-50). Admittedly, this is only a tentative value because
of the smallness of the sample. Sutcliffe and Sawyer [23] arrive at a
somewhat smaller value, 14 knots at 200 mb; however, their value was

Tl
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based on a quilte different approach.

Using the mean of 14 and 23 knots, i.e., 19 knots, a Franceschini-
Freeman trajectory for 2 hours at 40°N would result in a mean error of
displacement of about 13 nautical miles due to inaccuracles in determin-
ing V_. This estimate, applicable to middle latlitudes, 1s found by
averaging Eguation (9) and is, of course, applicable only to any indi-

vidual Z-hour leg of the trajectory. The extent to which this error is

cumulative is unknown.
The difficulties implied above increase with decreasing latitude.

* The errors 1n‘the'height reports are very much the same_at all lati-
tudes but lead to larger errors in 3g and D in low latitudes than in

high latitudes. South of 20-25°N the errors in Vg approach the magni-

tude of v 1tself, and any dynamic method will be useless here.

g

2.2, -Kinematic.Methods.

2.2.1. ‘Introduction. In practice the flow fields in the atmosphere
are glven by synoptic charts at regular 1ntervals. The problem then is
to construct a trajectory starting from a known point P o’ at time ¢t = 0,
during the time interval T which. is the period between synOptic charts.,

At this stage we need not be concerned about how the flow is repre-

sented, It may be by streamlines and isotachs, by contours, or by other.

means,

In order to construct the trajectory some assumption has to be
made about how the flow on Chart O ‘changes into the flow on Chart T.

Generally, the veloclity varies both in time and space. (ﬁ t) is
defined as a space-time point where R 1s the position vector from some
chosen origin and t 1s the time of the point. v(ﬁ6 t) is the veloclty
at point (%, t); v(R, t) s the acceleration, and 5:(R, t) 1s the local
acceleration at point (R, t), ete.

By the various assumptions which may be made regarding the transi-
tion from V(H, 0) to V(R, T) as t varies fromt =0 to t = T, a variety
of trajectory constructions arises.

In the following sections the constructions which appear to have
the most merit will be discussed: 1) Petterssen's Method, 2) J. J.
George's Method, which 18 a shortened version of Petterssen's Method,

3) Linear Interpolation Method, 4) Consecutive Streamline Methods,
5) the Central Tendency Method, 6) the Relative Trajectory Method,
and 7) the General Mills' Standard Objective Method, which may be
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considered as a verslon of the Relative Trajectory Method.

The operational aspects of these methods have already been de-~
scribed in Section I. In the following sub-sections some additional
information of a more theoretical nature is given concerning some of
the methods.

Method 4, 5, and 7 are exhaustively treated in Section I and will
receive no further mention in this Section.

In addition to the methods listed above, a short paragraph on con-
stant-vorticity trajectories has been included mainly for completeness
elthough it does‘fit very well under the heading, Kinematic Methods.

 All of these methods are kinematic since the trajectory isvcon-

‘structed by graphical integration of the known kinematic field .

v = (R, t)

- to obtain the trajestory:

Rag +f\7(ﬁ 7yat

where (R, t) now is a point on the ‘trajectory (see Figure 21) ,
Several of these methods are discussed 1n some detail because none

: cf them can be singled out and recommended as the optimum method under_

all conditions. The selection of the cptimum method depends on such
factora asn: accuracy of the chart representation of the flow, length
of period between synoptic charts, the flow patterns themselves, the
time avallable for trajectory construction, the desired eccuracy of the

trajectory, and possibly other factors.
The selection of the optimum method is discussed in sub-section 1, 15

2.2.2. Petterssen's Method. It is assumed that the acceleration of
the alr parcel is constant during the time interval T. With reference
to Figure 21

& VR, t) = const. ~2tro0$tSn
(18) or V(R t) =V(R,, 0) +2 ¢
= (R, 6) - ¥(R,, o] = 4 [¥(&, m) - (&, 0)].
Writing ¥ = R — ﬁo’ and since (R, t) 1s a point on the trajectory:
7 < o@Dl
and from equation (18): °
(19) F=f R, 0) + VR 6.
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o i S

Figure 21. Illustration of Notations b
Used in Sub-Sections 2.2 - 2,2.5. ‘ A

LI R FRER

Thus, when ¢ = T,

(20) F =3 [¥(R, o) + ¥(&, M.

The trajectories are second degree curves. Equation (19) is a
corollary of Equation (18). The end point of the trajectory is deter-

mined implicitly by Equation (20) and can be found by a successive
approximation method suggested by Petterssen.¥

; Choosing the origin of the vector R at the starting point of the .
i ; trajectory, Po in Figure 21, we have’§° = Q, ﬁl = ?, and we can write

¢ ; Equation (20) as follows:

# : .
(21) ? =% [$(0, 0) +¥(F 1),

The vector succession,

*In the first edition of Fetterssen's book (25] a typographical error occurs in the
text. This has been corrected in the Second Edition (1956).

4
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v(o, 0)
[V(o, 0) + ¥(F,, )]

[¥(0, 0) + (¥, T)]

e e LT
(o)

By W3y
i

Y
3]

]
[V B N P I

(22)

T Dy e St e e £ O i

’1‘- .
L

= 5 [3(0, 0) +¥(F,_;, M

b ‘has T as its limit
M ' T = lim T
y ' d n
A as n >
!5;i _ - provided cPrtain convergence c¢riteria are met. Ertel [7] studied
‘f ' R the convergence of this series and found that the convergence condition

is:

/ o . | ‘ ‘ V(BV)Q (aV)E

> N
For magnitude, %% = gx = 0.5 x 107 -4 c"l, the limiting valuesof T is

about 8 hours. :

b To find the trajectory going through point P on Chart O, the gra-
g phical construztion in Figure 1 is equivalent to Equations (22). When

¢ f T is given in hours and vV in knots, distances TV are in nautical miles.
! We set off vectors ?o =T v(0, 0) = ?;K and T:¢(3°, T) = F;ﬁo from
o P

ot S T R I

0" The point Pl bisects cognecting line ABo between the vectors' end

| ‘ points. Vector F‘F = 5 [¥(0, O) + 3(?0, T)). The velocity at P,

iy i on Chart T, v(r Ty, T) multiplied by T is set off from P_; this is vector

: § ) “231. P2 bisects connecting line ABl’ and P2 is the second approxima-

i 4 tion to the end point of the trajectory. If now the velocity at P,,

: v(ra, T), 18 close encugh to the velocity at P,» the construction can
cease at this stage, If not, the procedure is carried on until a point

; Pn is located on Chart T whose velocity is equal to the velocity at

@ point Pn-l within the accuracy of the chart representation. The conver-

gence of the procedure is expressed by the points Pl, 92, P3 steadily

approaching a final point P. The second approximation usually suffices,

(,‘ When the point P has been located, the trajectory is drawn in by

75
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fitting a smooth curve through P, and P, tangent to v(0, 0) at P, and
tangent v(T, T) at point P.
2.2,3. J. J. Qeorge's Method. J. J. George [10] suggests that

the first approximation ;Lof (22) will give good results for low-level
trajectories for chart intervals of ¢ hours. He uses this in low-level

advection problems (fog forecasting)

T v(0, 0)

ry — [V(0, 0) + v(r , T)]
He does not pursue the higher approximations. If the series is con-
tlnved as. Petterssen's, 1t will converge toward the same point. An
illustration of J. J. George's construction is glven in Filgure 22,

"3
ll

7, T/2[vie, et vir, , T)]

Filgure 22. J. J. George's Con-
struction.
2.2.4. The Linear Interpolation Method, It is assumed that
(23) V(A t) = V(F 0) + 4 (V(F, T) - V(& 0)]
for 0O g = T for all points r on the trajectory. In other words, the
local wind acccleration, av/at, is constant for a point but may vary R
from point to point, -«}
76
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R/o6 = g (F(F, 1) - ¥(EF, 0)]
The trajectory is glven by '
(24). T = f [—'FF*E ;I)(i‘), 0) + 'é:—‘;(?', ™)1 dr.
5 [

In practice the integral,(24) must be evaluated stepwise., We di-
vide the period, T, into n equal intervals of length %. Let ;k denote
the position at the end of the k-th interval, i.e., at time t = kT/n.

The veloclty at this point 18 3(Fk,‘0)'oh Chart O and V(?&, T) on
Chart T. The displacements during the interval (k.+ 1) is found by

>

adding % ;(;k’ 0) and % v(%,., T), each weighted by the factors
(ELEFE) and %, respectively, of the integral (24). Using the weighting

. factors at the midtime of the interval (k + 1), i.e., at time ¢ = ;fl.'x

(k + %) the weighting factors become: )
t _2n—2k-—1

) ‘ T > . T ~
a. For displacement = v(T, 0): T 5
b. For displacement & v(rk, T): % =

The displacerent during thé'interval (k + 1) then becomes:

(25) I (&= gk — 1 (7, 0) + 2k £ 1 F(F, T
The total displacement is:' . E
> > T 2n—2k—1 23 2k + 1 32
(26) Peyp =T v R L Zn V(F, 0) + = V(T T)]

The displacements at the end of the 1st, 2nd,. . '« o, n-th inter-
val may be written: :

7 = I2=19(0, 0) + 55 ¥(0, M1

7, = 7, + 2 (B3 U(F, 0) + 35 W(FE, 1)

Py = Py + 5 (B2 ¥(F,, 0) 2= ¥(F,, )]

%n = ;n-l * % [%K v(;n-l’ 0) 1 Ené; " 6(;n-1’ )]

The displacement (25) may be found by dissecting the connecting

1ine between the end points of vectors % 3(?k, 0) and‘% V(¥ , T) in the

proportions 2E§%—l to 2n;:_§% — 1 ag shown in Figure 23, From this

Figure: o + 1 o + 1
+ + ,
B"ﬁ=——-é—r-1-—-Ba = S (Aa—“ﬁ)

AD =AB + BD = (1 —-355%-l) AB +-3E§%—l'K3
T2no 2ol (3, o) + Bt ¥(F, 1)

it

i

Pigure 4 shows the construction of a trajectory of T = 12 hours, n = 4,

T7
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Figure 23. Construction of the Displacement
During the Interval (k + 1) by Proportionate
Parts. '

and 2 = 3 hours, following Equation (27). |
2.2, 5, The Relative Trajectory Method. This method applies strictl&
..only to flow patterns that areltranslated across the map without chang-
ing shape and intensity. N :
If the flow at t = O 18 V(?, 0), we have for time t by definition
(28) . v(?, t) = V(¥ - 3¢, 0) |
where ¢ 1s the translational velocity'of the pattern, e might be a func-
tion of t, but in practical applications the assumption that ¢ is a
constant 1s probably as good as any o@her on the average. The trajec-
tory may be constructed directly by

. N
P

. ot | :
(29) P VE-30, 0)af
(v]

L Figure 24 illustrates a case of the construction.

{‘ j We may also compute the trajectory by an alternate method. In
; % cases where the field of 3(?, 0)-3 is easily obtained as a continuous -
? % field, this alternate method 18 more rapld and glves more accurate re-

: sults. This happens, for example, when v(%, O) is given by a stream

functdon, V(¥, 0) = 0K x V¥ where G 1s a constant. We then form the

auxlliary stream function 7) defined by-¢ = @ kK x v . Since ¢ is a

constant, 77 const will be stralght lines parallel to ¢. The field

of V(%, 0)-¢ is then obtuined by graphical addition of the V and 7

pleids: V (F) = V(P 0)-8 =a R x9(¥+ 7). V' (F) is the relative ve- i
locity field, as appearing to an observer that moves with velocity 2. -

‘md
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[
d
¥ ; (
: - | . ————> STREAMLINES
: Figdre 24. Construction of a Trajectory in a
: Flow Pattgrn that Moves Across the Chart with
¢ Velocity c. Pc’ Pl’ PE’ ete., are the objec-
¥ - tive positions~at “t =70, 1, 2, etec.
ﬁ This field i1s stationary and the trajectories in this field (the rela-
! tive trajectories) coincide with the streamlines (the reiative stream-
? ) lines). The relative trajectories are obtained from ‘
£
A (30) o= [V@al;
é and since T = P! + ot, the chart trajectory ('"absolute" trajectory) is
% obtained from
: t
(31) r= [V (Fal + 3t.
o)
. Denoting the stream function of the relative veloclty v by v,
? Y = yV +-77, the relative trajectory is parallel to the v lines. The
5 @;} obJect's positions on the relative trajectory as a function of time may
3 79
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3 ) ! .g;g.‘
o be found by measuring the distances between adjacent vy lines 1n the &
E 5 same way a8 done when computing geostrophic winds from contour charts,
: A useful relation is found by noting that the area swept by a normal to
oL the trajectory and foilowing the object (the normal being bounded by
1 y the two adjacent vy lines) is proportional to the time of travel. This
3 § relationship follows from Figure 25. Referring to this Figure, we can
b write: ' . ' o :
(32) v =R oo , o
% where As 18 distance measured along the relative trajectory. Hence,
P ' v - L1 !
, | | At = m AnAs E—"’A,Y LA .
; § o where 4A 1s an area 'elementi Summed over the trajectory: '
- (33 t = 53 A - o

We éan locate the object at‘ any time from Formula 33 by measuring
the area between two adjacent y lines from the normal through the ini-
~tial point P, to the normal through the end point, :

t

.g o . o : 5

J+a¥

Figure 25. A Relative Trajectory in the Contour

ield of the Relatlive Velocity. The relative tra-

] ectory (thick line) starts at P.. Travel time of
ik the object is proportional to th8 area A between 4 .
' the adjacent contour lines, <y and 7y + 24v,.
Figures 5 and 6 of sub-section 1.10 show some trajectories computed

by the method of relative trajectories. In these constructions it is
: assumed that the velocity 1s geostrophlic, so that the Y field is iden-
tical with the contour field. The variation of G wlth latitude

(¢ = g/f) may be taken into account by introducing the same variation

in the 7) field; the 7) 1lines are then no longer strictly parallel or
equidistant.

*
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The relative trajectory method 1s often advantageous near pressure
centers and troughs and ridges with appreciabvle curvature. Often the
best estimate we can make of the behavior of such flow patterns between
synoptic charts 1s a straight translation from one map to another in
the limited area of the chart occupled by these features. The Relative
Trajectory Method applied to the parts of the trajectory which approach
these features will give a more realistic trajectory than, for example,
the Central Tendency Method. To illustrate this by an extreme example,
take the trajectory from point A in Figure 6. The Central Tendency
Method (see sub-section 1.7) would keep the object stationary at
point A for a period of 6 hours before and 6 hours after map time.
Since the circulation center moves, however, the object will be caught
by the northwesterly winds behind the center and start to move south-
eastward as shown by the trajectory.

2.2.6. Constant Vorticity Trajectories. Constant vorticity trajec-
tories have been discussed previously in AWS TR 105-99, December 1952.
The trajectories azre computed from

f+k,. v, =1¢
(34) { t o o]
v =V,
where Vo and fo are initial values of speed and Coriolis parameter, and

kt is the curvature of the trajectory.

The conditions imposed upon the atmosphere by (34) are only very
infrequently met satisfactorily on constant-pressure charts at any
level.

In tests the method has been found to be less satisfactory than
other standard methods [18].

Since the method requires only data at the initial point, it may
be considered as a method for forecasting the trajectory when little or
no data are avallable downstream. This leads into the realm of fore-
casting for no-data-areas, which is beyond the scope of this Manual.

2.3. Effect of Eddlies on the Trajectory.

The atmospheric motion that we can chart and predict is a smoothed
motion, 1l.e., the motion is a space and time average of the actual mo-
tion. The space scale and the time scale of thlis averaging process is
(in a not too definite manner) determined by the distances between ob-
serving points in the flow analysis, and also by the frequency and
accuracy of the observations. Of necessity in the prognoctic flow

-
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charts these scales become enlarged; since our abllity to predict be-
ccmes poorer as the space scale and time scale of the motlon diminish.
; The motions of smaller dimensions than these averaging scales (at
present perhaps 100-200 nautical miles and 6-12 hours for the high-
level flow over the U. S.,) will for our purpose be calied eddies. The
eddies represent a random component of motion unobservable and, there-
fore, in principle unpredictablc. The eddies of a magnitude equal to
or larger than the balloon are the ones which will affect 1ts trajec-
tory. The extent to which the trajectory 18 affected will determine an
upper limit for the accuracy with which we can forecast the trajectory.
Our knowledge of the eddies of the‘high-level flow is very limlted.
However, a few experiments have been conducted Which throw SOme lightr
on the eddy :ffect along a trajectory.
C. B, Moore et al [22] studied the trajectories of balloons re-
' -leased:simultaneously to float at 300 mb, The balloons were tracked by“,
' aircrqft. Table VII gives the observed horizontal separation of the
balloona. Most of the time the vertical separation was less than 150

fo
1
4
3
¥
;.
%
b
i

feet.
TABLE VII | -
' Separation of Balloon Pairs at 300 mb.
" |Piignt Dis- | Flight Time | Separation | Across v | i
tance when . ‘when ' in % of Track
Pair | Compared Compared Separation | Flight Separation
Q. (mt) | (hr) ~ (m1) Distance (m1)
1 850 14,5 20 2.3 8
. 2 775 18.0 13 1.7 6
' 3 1200 20.2 i .08 1
: 4o 1200 20.2 5 A 1
5 1200 20.2 5 4 1 .
i . 6 1640 27.5 18 1.1 5

*Pairs 3, 4, and 5 are internal comparisons of a cluster of three balloons,

These separations, presumably malnly due to eddy motions, appear
surprisingly small. The mean vector error of hindcast trajectorles is
about 20% of the distance travelled. Compared te that error the effect
of eddy motisns on the trajectory appears negligibly small, We might

be tempted to draw the conclusion that the unpredictable eddy motions *}
contribute very little to the error in the trajectory hindcasts. This "
82
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conclusion 1s probably not correct. Owlng to the various sizes of
eddies encountered, the rate at which two talloons separate is a func-
tion of the distance between them (Richardson [26], Sutton [30], Durst
and Gilbert [5]). This is illustrated in Figure 26 where two eddies of
scale S are indicated. The two particles Bl and B2, a distance s

(s < ") apart. will separate very little in a given time; whereas, the
two particles Bl and B3, a distance S apart, will change distance
rapidly. '

Figure 26. 1Illustration of the
Effectiveness of Eddies in Separat-
ing Two Air Farcels as a Function of
the Initial Separation and the Scale
of the Eddies.

The separation of the balloons in Table VII only reached a magnl-
tude of the order of 10-20 miles. This magnitude 1s much smaller than
the averaging scale of the upper-level synoptic flow fields; hence,
Table VII shows only the effect of the lower end of the eddy spectrum.

When we make a trajectory hindcast or forecast, we may think of
the computed position and the verifylng position as representing posi-
tions of a balloon palr., The separation between them 1s the forecast
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error. The "computed balloon is not affected by eddles; the actual
balloon 1s. The larger-scale eddies are particularly effective in
causing large errors, but are much less effective in separating an act-
ual balloon pair as long as their distances apart are of smaller scale
than the eddlies we consider. Hence, we ' cannot conclude from Table VII
that eddy moticn contributes only little to the error of computed tra-
Jjectories. It should be recalled here that eddies were defined as
motions of scales less than the averagling scales. The error in a com~-
puted trajectory 1s due to the errors in the smoothed motion as well as
to eddies. In just what proportions these two enter is not possible to
say at the present time. The smoothed flow is onl& very loosely de-
fined in synoptic analysis practice, and we alsqQ have no ready means of
obtaining the errors of analysis of this smoothed flow. We can state
only that their combined eoffects is of the order of 15-20% of the dis-
tance travelled (see sub-section 1.13).
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